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ABSTRACT
Recent regulatory efforts, including Executive Order 14110 and
the AI Bill of Rights, have focused on mitigating discrimination
in AI systems through novel and traditional application of anti-
discrimination laws. While these initiatives rightly emphasize fair-
ness testing and mitigation, we argue that they pay insufficient
attention to robust bias measurement and mitigation—and that
without doing so, the frameworks cannot effectively achieve the
goal of reducing discrimination in deployed AI models. This over-
sight is particularly concerning given the instability and brittleness
of current algorithmic bias mitigation and fairness optimization
methods, as highlighted by growing evidence in the algorithmic
fairness literature. This instability heightens the risk of what we
term discrimination-hacking or d-hacking, a scenario where, inad-
vertently or deliberately, the selection of models based on favorable
fairness metrics within specific samples could lead to misleading
or non-generalizable fairness performance. We term this effect
d-hacking because systematically selecting among numerous mod-
els to find the least discriminatory one parallels the concept of
p-hacking in social science research of selectively reporting out-
comes that appear statistically significant resulting in misleading
conclusions. In light of these challenges, we argue that AI fairness
regulation should not only call for fairness measurement and bias
mitigation, but also specify methods to ensure robust solutions to
discrimination in AI systems. Towards the goal of arguing for ro-
bust fairness assessment and bias mitigation in AI regulation, this
paper (1) synthesizes evidence of d-hacking in the computer science
literature and provides experimental demonstrations of d-hacking,
(2) analyzes current legal frameworks to understand the treatment
of robust fairness and non-discriminatory behavior, both in recent
AI regulation proposals and traditional U.S. discrimination law, and
(3) outlines policy recommendations for preventing d-hacking in
high-stakes domains.

CCS CONCEPTS
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Applied computing → Law; • General and reference → Eval-
uation; Measurement; Reliability.
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1 INTRODUCTION
There has been increasing focus around defining, measuring, and
reporting fairness metrics of algorithms in emergent AI regula-
tion [4, 30]. In addition, the disparate impact doctrine—a corner-
stone of anti-discrimination law stating that decision-making sys-
tems cannot produce disparate impact across demographic groups
unless the system meets a business justification and there is no
less discriminatory alternative to achieve that legitimate goal—has
been increasingly applied to algorithmic systems [22, 42, 48]. Es-
sentially, measuring and reporting prediction disparities is not only
becoming best practice but a keystone of AI regulation.

However, despite these regulatory effort, there is increasing
evidence of instability and brittleness of fairness optimization for
many applications and debiasing methods. Recent work has pointed
to how modeling decisions [14, 18, 35, 37, 57] and distribution
shift [6, 8, 13, 29, 39, 56, 75] can lead to meaningful differences
in fairness performance, either across different training runs or
between training and deployment. Yet, recent AI regulatory ef-
forts do little to acknowledge or address these challenges in their
frameworks for measuring, reporting, and reducing AI system bias.
Arguably, fairness robustness concerns could be addressed when
current high-level regulatory efforts are translated into detailed
requirements. However, without explicit recognition of the need for
fairness robustness, there is no guarantee that more specific guide-
lines would address d-hacking. Notably, these high-level guidelines
do acknowledge robustness concerns when they pertain to model
performance unrelated to fairness, underscoring the importance of
high-level recognition in shaping future detailed guidance.

At best, this reality leaves open the possibility that even orga-
nizations attempting in good faith to comply with AI regulation
may invest time and money into bias mitigation that prove to be
ineffective, or even detrimental to anti-discrimination goals, due to
their lack of generalizability. At worst, the failure to acknowledge
the instability and brittleness of fairness optimization could create
opportunities for intentional, ongoing discrimination despite recent
regulatory efforts to prevent AI discrimination. This could happen
if firms intent on evading discrimination laws manipulate the pro-
cess by choosing models that appear fair on a specific training set,
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yet fail to demonstrate generalized fairness across the deployment
population.

We term this effect discrimination hacking, or d-hacking, because
the search over manymodels for a model that is least discriminatory
can lead to an effect analogous to the concern of p-hacking in social
science research. P-hacking involves manipulating data analysis
until statistically significant results are obtained, often compromis-
ing the integrity and reliability of research findings. Importantly,
p-hacking can lead to misleading conclusions by capitalizing on
random variations in the data so that findings are not generalizable.
Similarly, d-hacking involves searching over models until one ex-
hibits the desirable properties while the true object of interest is
the fairness performance out-of-sample.

In light of the potential for d-hacking, intentional or inadvertent,
it is crucial to explicitly require robustness analysis for fairness
mitigation procedures in any legal requirement for bias mitigation.
Towards this goal, in this paper we argue for the incorporation of
safeguards against d-hacking in responsible AI regulation.We begin
by synthesizing the evidence of the dangers of d-hacking in the com-
puter science literature and provide experimental demonstrations
(Section 2). Next, in Section 3 we analyze recent regulatory efforts
around AI governance in the U.S. to assess where attention has been
paid to the idea of robust AI fairness and where language may be in-
terpreted to require robustness in AI fairness evaluation and mitiga-
tion. Although there is some recognition of the risks associated with
fragile or unstable fairness measurement and mitigation—indicated
by concerns about changes in bias measurements over time, lack of
standardization, and lack of replicability—we argue that recent AI
regulatory efforts do not adequately prevent d-hacking in practice.
Then, in Section 4, we examine traditional U.S. anti-discrimination
law to understand how concerns of robustness and generalization
have been addressed in more established legal frameworks.

We demonstrate that while robust measures of discrimination
have been emphasized, robustness requirements primarily serve as
a means to screen discrimination claims. We argue that the similar
to the way traditional anti-discriminaiton law has required plaintiffs
to demonstrate that measured disparities are not merely product
of random variation and particular measurement choices, entities
claiming their models are fair should face comparable scrutiny.
They must prove that their fairness metrics are robust and reliable.
We end, in Section 5, by outlining several policy recommendations
for preventing d-hacking in high-stakes domains. Among these,
we highlight the need for the same robustness measures applied to
ensuring reliable performance to be applied to claims on fairness.
We argue that model practitioners should provide an easy-to-use
API for systems deployed in a wide range of environments, enabling
users to assess deployment data for fairness in their application
context. We further recommend practitioners document all analy-
ses conducted and pre-register their intended fairness testing and
that model practitioners consider the fairness metrics against hypo-
thetical populations, thereby enhancing fairness and discrimination
testing.

2 FAIRNESS INSTABILITY AND D-HACKING
In this section, we present a sample of the evidence for the possi-
bility of d-hacking in the computer science literature. Our aim is to

show how a collection of phenomena documented in the machine
learning literature— namely, distribution shift, multiplicity, and
overfitting—leave open the possibility for practitioners to develop
facially fair algorithmic systems that do not perform fairly during
deployment, either on accident or on purpose. Instead of presenting
a comprehensive survey around problems such as distribution shift
or multiplicity as others have done [10, 19], we aim only to expose
the reality of these problems and their repercussions to a policy
and legal audience, to motivate the need for regulatory attention to
ensuring robustly fair systems—which, as we expand in Section 3,
is severely lacking.

Several recent works have called attention to the fact that often,
models optimized to perform well with regards to fairness at train-
ing time do not display similar fairness performance during model
deployment. We delve into two sets of reasons why this may be the
case—model instability and overfitting, and distribution shift, and
how these phenomena relate to d-hacking.

2.1 Model Instability and Overfitting
Recent work has shown that models with almost identical train-
ing environments—for example, only different in the random seed
set to initialize training [14], a miniscule sampling difference in
the training set [14, 23], or even simply a change in the ordering
of data points during training [37]—can have noticeable differ-
ences in their predictions on individuals. The differences in pre-
dictions across models with minute differences in training setup
can even aggregate to noticeable differences in group fairness met-
rics [26, 37]. And, importantly, model instability over small changes
to the training environment extends to models trained to satisfy
fairness constraints—several works have demonstrated that small
differences in model training environment—such as a difference
in train-test-split [33, 36] or leave-one-out differences in the train-
ing set [47] can have noticeable differences in the fairness they
are able to achieve. Indeed, there is evidence to suggest that en-
forcing fairness on machine learning models can actually increase
the model’s prediction instability over small perturbations to the
training environment [53].

Some have pointed to this instability as a means to increase
fairness with little cost to accuracy [15, 19], as often, these models
stemming from nearly identical training setups do not differ much
with regards to accuracy [19, 53]. While we agree that exploiting
model flexibility for decreasing fairness is a good idea, the high
variance of fair classifiers presents a risk for d-hacking.

First, this instability in fairness behavior over small perturbations
to training setup again leaves the potential for even well-meaning
pracitioners to report fairness gains which are simply over-fit to
their modeling setup. Much like how the classic bias-variance trade-
off leads to overfitting of high variancemodels, so too the overfitting
of fairness definitions to a particular train-test split could mean
the fairness criteria does not generalize to their full deployment
distribution. Similarly, a model which is fair on a particular set of
hyperparameters may be brittle to onlinemodeling changesmade to
optimize performance during deployment. Beyond this, practition-
ers could take advantage of this instability to find a model that looks
facially fair but will not perform well on the overall distribution or
over modeling changes during deployment. While previous works
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Dataset Model Type Avg DD (Test) Avg Accs (Test) Min. It. LR DD (Test) Min It. LR Accs (Test)

HMDA

Decision Tree 10.61% 92.76% 12.79% 93.10%
Logistic Regression 20.08% 92.27% 6.74% 92.56%
Random Forest 9.47% 94.03% 10.92% 93.65%
SVM 9.01% 91.65% 8.40% 91.11%

German Credit

Decision Tree 8.92% 63.45% 6.27% 68.50%
Logistic Regression 9.22% 73.05% 0.80% 69.50%
Random Forest 8.59% 71.80% 3.59% 73.00%
SVM 8.13% 73.00% 5.01% 74.50%

Table 1: Left two columns: average demographic disparity (DD) and accuracy for different models trained to reduce demographic
disparity, evaluated on the model’s test set over ten different train/test splits. Right two columns: the demographic disparity
and accuracy for the iteration where the model which is worst on average reached the lowest unfairness over the ten runs. The
top four rows indicate results for the HMDA dataset, and the bottom four for the German Credit dataset.

have described adversarial methods to create facially fair model
explanations [7, 9], to the authors knowledge there has been little
work around selecting models purposefully to appear fair based
on certain metrics or tests but to be unfair during deployment. To
illustrate our point, we give a brief experimental demonstration of
the possibility for D-hacking as a result of overfitting.

Experimental Demonstration. In these experiments, the protected
attribute over which we endeavor to achieve equity is gender, and
the metric of fairness we consider is demographic parity, (aiming
for equal selection rate, i.e. equal rate of positive predictions, across
gender). We test the demographic parity difference of four different
classification models (Decision Tree, Logistic Regression, Random
Forest, SVM) trained to reduce their demographic disparity using
the FairLearn [12] package. We train ten of each of these types of
models by creating ten different different random train-test splits
of the dataset, and then calculate the accuracy and disparity on
the test set for each individual model on the given train-test split
and then also the average accuracy and disparity of each model
type on average over the ten trials. We perform these experiments
over two datasets: the HMDA dataset from Boston [43], and the
German Credit Dataset [46]. Experimental details such as the size
of the datasets, random seed, and other details can be found in the
Appendix.

We demonstrate that which model appears the fairest changes
depending on the train-test split, and the fairness can change by an
order of magnitude between trials. This instability has been pointed
out previously in the literature, as noted in the above paragraphs.
However, what we point out here is that this instability can be used
for d-hacking: in other words, evidence can be presented to suggest
a model is the fairest when it is in fact not.

We present our demonstration in Table 1. In the HMDA dataset,
we see that the Logistic Regression model is least fair model when
considering average performance over ten random train-test splits,
by a factor of two: it displays approximately 20% demographic
disparity as opposed to approximately 10% for the other models.
However, over the ten train/test splits, the logistic regression model
displays anminimum demographic disparity of 6.74%—which, when
considering only that specific train/test split, is in fact the fairest
model. Similarly, on the German Credit Dataset, the Logistic Regres-
sion model is again the least fair model when considering average

performance over ten random train-test splits. However, on the
iteration where it displays the minimum unfairness, the Logistic
Regression model appears to be the best choice with respect to
fairness—it achieves a demographic disparity almost an order of
magnitude lower than the rest of the models (approximately 0.8%).
We provide further results on deep models, which have been shown
to be particularly unstable in terms of their predictions [14] and
fairness [37] across small changes to their training setup, in Appen-
dix A.3.

At best, an unknowledgable practitioner may pick a more dis-
criminatory model, such as the Logisitic Regression model in the
case of HMDA, because they did not cross-validate their fairness re-
sults over several train-test splits. In situations where there are ulte-
rior motives, however— if a practitioner or company does not want
to invest sufficient resources into a more comprehensive search
for a less discriminatory model, or if the practitioner or company
does not want to sacrifice any accuracy for a more fair model— this
instability can be easily harnessed to suggest larger fairness gains
than are likely to generalize. In this case, by reporting results from
a particular train/test split for fairness, a practitioner can inflate
perceived fairness gains while putting in little effort to find a model
whose fairness behavior generalizes to the overall population.

Mitigation Techniques. There are some mitigation techniques
proposed for this type of model instability— many works have
suggested ensembling techniques over a variety of training envi-
ronments (i.e. using the average response from a large group of
models which slightly different training environments) [16, 54].
While these works were aimed at stabilizing prediction behavior
generally and not specifically at fairness, they may be able to be
extended, or still have a positive effect. Other works have paid
more attention to the problem of instability over the samples of the
training set in particular, and have developed training techniques
which increase robustness over different selections of the train-
ing set [27, 33]. Another set of solutions point to creating models
whose fairness behavior is robust to a larger set of changes in their
treatment distribution, but we cover those works in more detail in
the next section.
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Dataset Model Type D1 Accs (Test) D1 DD (Test) D2 Accs D2 DD

HMDA

Decision Tree 88.98% 6.81% 90.09% 12.07%
Logistic Regression 81.89% 8.69% 91.82% 30.63%
Random Forest 91.34% 1.02% 94.65% 5.94%
SVM 91.34% 1.12% 92.92% 2.68%

ACS Income

Decision Tree 73.95% 7.83% 70.01% 10.22%
Logistic Regression 78.97% 3.52% 77.86% 9.66%
Random Forest 80.29% 8.81% 77.12% 12.74%
SVM 78.54% 3.26% 76.27% 11.48%

Table 2: Left two columns: demographic disparity and accuracy for different models trained to reduce demographic disparity
trained and evaluated on one distribution (D1). Right two columns: the demographic disparity and accuracy for the same
models tested on a shifted distribution (D2). The top four rows indicate results for the HMDA dataset, which was split between
two areas in Boston, and the bottom four for the ACSIncome dataset [28].

2.2 Distribution Shift
Another reason why models performing well with regards to fair-
ness or other properties during training and development do not go
on to perform well during deployment is distribution shift. Distribu-
tion shift is a phenomenon where the model’s treatment population
differs from the dataset that it was trained on. Distribution shift
can have different components: the rates of different demographic
groups can change from training to deployment data, often referred
to as demographic shift; the rate of the predicted label (e.g. default
rates in the credit setting) might change in the training and deploy-
ment distributions, often called label shift; the prevalence of certain
input features in the dataset might change, often called covariate
shift; and finally, the actual underlying relationship between the
input features and the label might change, so that certain features
are no longer predictive—often called concept drift.

While it may seem like an oversight to train a model on a dis-
tribution that is different than its eventual treatment population,
distribution shift is extremely commonplace in the deployment of AI
systems [70]. Any of, or a combination of, these scenarios can hap-
pen if a model is trained on data from e.g. a different geographical
area than where it will be deployed, as is common in many fairness-
critical areas such as pre-trial risk assessment [63]; or a model may
be trained on data with a temporal difference from its treatment
population, which can happen naturally if amodel is in use formany
years without retraining; or, improvements in data collection over
time might result in distribution shift. Some scholars have shown
that releasing models meant to positively benefit society— such
as healthcare systems meant to reduce hospitalization—actually
change the underlying distribution of their treatment population
over time and become unfair as a result of this self-induced distri-
bution shift [59]. Several recent papers provide a more in-depth
technical breakdown of the various kinds of distribution shift for in-
terested readers [10], here we focus on highlighting certain results
which are relevant to the possibility of d-hacking.

Ding et al. [28] provide a comprehensive display of the incon-
sistency of fairness results across distribution shifts by creating a
variety of datasets varying over geography and time from US Cen-
sus data, and testing performance of fairness intervention across
when trained on one subset and then tested over various changes
in time and location. They find both that the "effect size of different
[fairness] interventions varies greatly" across subsets of the data

(e.g. one state to another), and that "training on one state and test-
ing on another generally leads to unpredictable results. Accuracy
and fairness criteria could change in either direction" [28]. Giguere
et al. [39] show that common fairness enforcing packages such
as FairLearn, and even methods which have been developed to
be sensitive to distribution shift, are largely unable to reproduce
training-time fairness behavior after a distribution shift. This lack
of robustness in fairness behavior over distribution shifts that are
incredibly common in machine learning deployments [70] leaves
open the possibility that even practitioners trying to enforce fair-
ness on their systems may accidentally over-fit to their particular
sample. Even worse, practitioners can take advantage of this lack of
robustness to find a fair training method and training distribution
to create a model which appears to lead to good fairness results on
particular deployment domain, but does not generalize well to the
full set of deployments, or distribution shifts.

Experimental Demonstration. In this set of experiments, we show
how the phenomenon of distribution shift can also unwittingly or
intentionally end in a suboptimally fair model being selected. We
train and test four differentmodels on one segment of a distribution–
in the case of HMDA [43], we train and test the model on rows from
the Boston Suffolk county (D1), and simulate deployment behavior
on more rural region in the greater Boston area (D2), whereas for
the ACS Income dataset [28], we train and test on data from Cali-
fornia (D1), and then simulate deployment in Tennessee (D2). As
we can see in both cases, the model selected to be the most fair in
the original distribution is not the fairest model for the deployment
distribution. This leaves open the possibility that a suboptimally
fair model is chosen for deployment based on a (potentially even
mildly, as in the case of the Boston data) non-representative test set.
This phenomenon has been much more extensively documented
in, e.g., Ding et al. [28], and simply provide a brief illustration here.
Again, we present this demonstration here to point out that distri-
bution shift can be leveraged for d-hacking—i.e., distribution shift
can be exploited to deploy suboptimially fair models in practice.
Companies that know their deployment populations will be var-
ied should collect data and test the disparity of their model on as
much relevant data—however, if a company is unwilling to invest
resources to do so, they may simply show that their model is fair
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on available data, leaving open the possibility of d-hacking. If regu-
lation around discrimination testing is not sufficiently strict—e.g.
does not discourage behavior such as incomplete coverage of the
deployment distribution in the fairness test data—companies could
be compliant while still being discriminatory. Regulation around
bias testing and mitigation should thus be designed with d-hacking
prevention in mind to effectively stop the deployment of biased
systems.

Mitigation Techniques. Thankfully, the problem of fairness gen-
eralizability across data shifts has lead to a growing field of work
aimed at creating techniques which guarantee fairness across mul-
tiple domains [8, 13, 29, 39, 56, 75]. There are certainly practical
hurdles to several of these methods—for example, some methods
require a complete causal model of the data distribution in order
to ensure generalizability of fairness behavior over distribution
shift [76]; others require at least some amount of data from the tar-
get distribution [25], and others still can lead to unnecessarily large
performance drops due to protecting against unfairness over an ex-
tremely wide set of possible distributions [80]. Regulatory attention
to the problem of instability in fairness mitigation may help push
for much needed further development and stress-testing of robustly
fair learning paradigms, to help understand which methods might
be best to use in practice under various contexts. However, as we ex-
pand upon in Section 3, the regulatory frameworks growing around
fairness testing and mitigation pay inadequate attention to the ro-
bustness and stability of reported fairness metrics and mitigation
strategies.

3 FAIRNESS AND ROBUSTNESS IN EMERGING
AI REGULATION

In recent years, there have been regulatory efforts to establish
legal guidance and frameworks for the regulation of AI. A primary
focus of these efforts is addressing issues related to fairness and
discrimination. This section begins by discussing recent initiatives
within the U.S. aimed at establishing a regulatory framework for AI,
and specifically their focus regarding fairness and discrimination.
We then consider the limited ways in which some of these efforts
highlight robustness-related concerns and consider whether they
adequately address the risks discussed in Section 2.

We draw three conclusions from our analysis. First, a funda-
mental aspect of current regulatory efforts is the requirement that
models be fair and non-discriminatory, suggesting that robust mea-
surement, testing, and mitigation of bias should be mandated to
achieve these stated goals. Second, despite the substantial evidence
of d-hacking risks discussed in Section 2, current regulatory ef-
forts largely overlook the robustness of discrimination and fair-
ness measurement. Although some regulatory efforts acknowledge
robustness-related concerns, these instances only partially recog-
nize the risks of d-hacking and the necessary approaches to address
them. Third, while some may claim that current regulatory efforts
are too high-level to recognize the need for fairness robustness, we
argue that without some acknowledgement, there is no guarantee
that more specific guidelines stemming from these efforts would
address d-hacking. Notably, these high-level guidelines do acknowl-
edge robustness concerns when they pertain to model performance

unrelated to fairness, underscoring the importance of high-level
recognition in shaping future detailed guidance.

3.1 Emerging regulation of AI
Although significant academic attention has already been given to
the possibility that algorithmic predictions may raise fairness and
equity concerns, these concerns have only recently entered legal
and policy discourse. In the U.S., the development of federal reg-
ulatory frameworks governing the use of AI both by government
agencies and private market participants is still in its infancy. The
current approach is to provide overarching guidance through sev-
eral initiatives of the White House and other bodies, while agencies
are primarily responsible for the implementation of the regulatory
framework in their respective areas of responsibility.

In this section we provide brief descriptions of some of the most
high-profile attempts to regulate AI and highlight the way they
emphasize fairness and discrimination. In the next section, we
discuss how these initiatives address fairness robustness, if at all.

Blueprint for an AI Bill of Rights. The White House’s Blueprint
for an AI Bill of Rights [4], circulated in October 2022, was one the
first attempts to highlight the risks associated with AI and lay down
principles to secure the public’s rights to enjoy the potential bene-
fits from automated systems while safeguarding against the harms.
One of the rights in the Blueprint is “Algorithmic Discrimination
Protections” [4]. The Blueprint explains that "[a]lgorithmic discrim-
ination occurs when automated systems contribute to unjustified
different treatment or impacts disfavoring people based on their
race, color, ethnicity, sex . . ., or any other classification protected
by law" [4]. Accordingly, it urges AI developers to take a range
of precautionary measures before taking their products to market,
including proactively assessing equity considerations during the
design phase, ensuring that data inputs are representative and ro-
bust, and monitoring and mitigating disparities both before and
during the product’s use [4].

Executive Order 14110. Building on the Blueprint for an AI Bill of
Rights, the Biden Administration’s Executive Order No. 14110 on
Safe, Secure, and Trustworthy Development and Use of Artificial Intel-
ligence (E.O. 14110) from October 30, 2023 [30] lays down policies
and principles for responsible AI. E.O. 14110 expands upon previ-
ously articulated fairness concerns in its discussion of its fourth
policy area, which relates to equity and civil rights, reiterating the
concern that facially neutral algorithmic inputs may exacerbate
existing patterns of discrimination [11].1 Unlike the Blueprint that
lists high-level rights, E.O. 14110 acts as a directive for federal agen-
cies to safeguard against the risks of AI. This agency-by-agency
approach allows each federal entity to tailor its guidelines to its
respective regulatory domain. For example, E.O. 14110 requires that

1“Artificial Intelligence systems deployed irresponsibly have reproduced and
intensified existing inequities, caused new types of harmful discrimination,
and exacerbated online and physical harms.” The definition of algorithmic
discrimination that appears in the Blueprint and is reiterated in [30] is also
included in the Biden Administration’s February 2023 Executive Order No. 13985
on Further Advancing Racial Equity and Support for Underserved Communities
Through the Federal Government 86 Fed. Reg. 7,009 (Feb. 16, 2023), available at
https://www.federalregister.gov/documents/2021/01/25/2021-01753/advancing-
racial-equity-and-support-for-underserved-communities-through-the-federal-
government.
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the Department of Justice furnish a report on the use of AI in the
criminal justice system, that the Department of Human Services
and Homeland Security publish a plan addressing states’ use of
algorithmic systems in distributing public benefits, and that the
Department of Labor publish guidance for federal contractors to
prevent bias in AI systems used in hiring decisions [30]. These
directives reflect a preference of maintaining a broad conception of
algorithmic discrimination while delegating to relevant agencies
the role of developing substantive guidance in specific contexts.

Office of Management and Budget’s Memorandum. Following E.O.
14110, the Office of Management and Budget (OMB) released a
Draft Memorandum on Advancing Governance, Innovation, and Risk
Management for Agency Use of Artificial Intelligence (OMB Draft
Memorandum) to implement E.O. 14110 [62]. The draft provides
further guidance on AI governance structures in federal agencies
by articulating concrete evaluation and monitoring practices and di-
rects federal agencies to take special precautions when dealing with
what it terms “rights-impacting AI.” The draft memorandum defines
rights-impacting AI as AI “whose output serves as a basis for deci-
sion or action that has a legal, material, or similarly significant effect”
on an individual’s civil rights, equal opportunities, or access to crit-
ical resources or services. This definition of rights-impacting AI is
supplemented with a list of purposes that carry the presumption of
fitting within this category, including law enforcement-related risk
assessments, tenant screening and controls, employment decisions,
loan-allocation processes, and decisions regarding eligibility for
government benefits, among others [62].

National Institute of Standards and Technology’s Risk Management
Framework. A final example of recent AI regulation initiatives is the
National Institute of Standards and Technology’s (NIST) Artificial
Intelligence Risk Management Framework (NIST Framework) from
January, 2023 [61]. As a federal agency under the U.S. Department of
Commerce, NIST specializes in developing measurement standards
and advancing technology, including AI. The NIST Framework of-
fers a voluntary, structured approach for integrating responsible AI
practices in the design, development, deployment, and assessment
of AI products, services, and systems. Developed through multiple
iterations and public feedback, the NIST Framework emphasizes
the importance of addressing harmful bias and discrimination in AI,
marking it as a key aspect of trustworthy AI. One of the character-
istics of trustworthy AI laid out in the framework is the mitigation
of bias: “Fairness in AI includes concerns for equality and equity by
addressing issues such as harmful bias and discrimination” [61].2

These initiatives demonstrate the emerging attempt in the U.S. to
embrace the benefits of AI while providing a regulatory structure to
mitigate the harms and discriminatory concerns of AI and the need
to test and monitor algorithmic decision-making for fairness and
discrimination purposes. In the next section, we discuss how despite
the prominence of testing for discrimination in these proposals, less
attention has been paid to the robustness of this testing, potentially
undermining the high-level goals of the initiatives in mitigating AI
discrimination concerns.

2The NIST Framework is intended to be updated with the shifting regulatory environ-
ment. For example, in April 2024, NIST released its AI Risk Management Framework
for Generative AI.

3.2 Fairness robustness in regulatory initiatives
Recent regulatory efforts emphasize that some level of testing is
required to ensure that algorithms are deployed in an equitable and
nondiscriminatory manner. In this section, we discuss a number of
robustness-related concerns mentioned in these efforts. Although
these requirements are likely inadequate to address the risks high-
lighted in Section 2, they reflect a caution against relying on fairness
metrics that may not generalize.

Temporal aspects of fairness testing. Some AI initiatives require
both an initial consideration of fairness concerns as well as ongoing
testing. These added temporal aspects of fairness testing can reflect
the concern of robustness of initial fairness measures. For example,
the Blueprint for an AI Bill of Rights requires the initial showing
of fairness and, post-deployment, there must be “ongoing dispar-
ity testing and mitigation, and clear organizational oversight” [4].
The OMB draft provides more specific instructions with respect
to ongoing monitoring. For example, the OMB draft requires that
agencies consider how “unforeseen circumstances, changes to the
system after deployment, or changes to the context of use or as-
sociated data” may impact discrimination and fairness concerns.
Where sufficient mitigation is not possible, agencies must safely
discontinue use of the affected AI functionality [62].

Requirements for the ongoing testing of fairness and discrim-
ination also appear in the guidance of several federal agencies
who have sought to implement E.O. 14100 by adapting the scope
of algorithmic fairness and discrimination to the context of their
respective jurisdictions. The Equal Employment Opportunity Com-
mission (EEOC), responsible for enforcing federal laws that prohibit
discrimination in the workplace, encourages employers to ensure
that AI selection procedures do not produce disproportionately
large negative impacts by "conduct[ing] self-analyses on an on-
going basis" [84]. Similarly, the Federal Trade Commission (FTC)
has encouraged that lenders comply with lending laws by basing
credit decisions on "data derived from an empirical comparison of
sample groups . . . that [] are periodically revalidated by the use of
appropriate statistical principles and methodology, and adjusted as
necessary to maintain predictive ability" [31].

While these guidelines emphasize the need for fairness consider-
ation post-deployment, this ongoing testing requirement receives
relatively little attention relative to the initial showing of fairness
in these initiatives. Moreover, there is little attempt to specify what
these ongoing obligations entail and whether they address the ro-
bustness concerns we have highlighted.

Risks due to Lack of Standardization. One aspect of AI risk man-
agement that the NIST Framework highlights, although not ex-
clusively in the fairness setting, is the concern over the lack of
standardized measures of responsible AI: “The current lack of con-
sensus on robust and verifiable measurement methods for risk and
trustworthiness, and applicability to different AI use cases, is an
AI risk measurement challenge... measurement approaches can be
oversimplified, gamed, lack critical nuance, become relied upon
in unexpected ways, or fail to account for differences in affected
groups and contexts” [61]. This statement from NIST underscores
some of the concrete concerns raised in Section 2. However, despite
recognizing these issues, the framework stops short of explaining
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how to practically implement these standards as legal requirements,
and does not directly link the lack of standardization to the concern
that fairness and discrimination testing can be manipulated or lead
to non-generalizable results.

Replicability of Standards. Beyond standardization, another theme
in some initiatives is that the auditing of AI systems should produce
replicable results. For instance, E.O. 14110 emphasizes that ensuring
AI systems are safe and secure requires “robust, reliable, repeatable,
and standardized evaluations of AI systems” [30]. This requirement
for repeatable evaluations could be interpreted as a need for the
replicability of testing results, which may include ensuring that ini-
tial fairness results are consistent in future evaluations. E.O. 14110
provides little detail on how to implement auditing that would
allow for such repeatable results. Instead, it delegates the respon-
sibility for robustness to federal agencies through a mandate to
prevent discrimination via “robust technical evaluations, careful
oversight, engagement with affected communities, and rigorous
regulation” [30].

While emerging regulatory frameworks acknowledge some ro-
bustness related concerns in the estimation and mitigation of bias
in AI systems, they fall short in concretely requiring robust fairness
evaluation and mitigation to address the risks identified in Section 2.
This lack of detailed consideration for discrimination robustness
should not be solely attributed to the high-level nature of these
frameworks. This is because the frameworks do highlight robust-
ness concerns in contexts unrelated to discrimination, and even
when they become more detailed, they tend to overlook fairness
and discrimination robustness. For instance, regulatory frameworks
discuss robustness in the context of model performance and safety.
E.O. 14110 mandates “robust technical evaluations” of AI systems
primarily in terms of system safety, but does not extend this robust-
ness requirement to fairness and discrimination. Similarly, the NIST
Framework defines robustness or generalizability as the “ability of
a system to maintain its level of performance under a variety of
circumstances,” yet does not connect this robustness requirement
to fairness and discrimination. These instances suggest that while
drafters of these frameworks were concerned with AI system per-
formance and safety robustness, they did not emphasize fairness
and discrimination robustness. Moreover, even when the frame-
works provide more detailed guidance, such as the discussion in the
40-page Blueprint for an AI Bill of Rights [4] about fairness auditing,
they neither recognize nor address concerns related to d-hacking.
Our conclusion is that as agencies consider concrete auditing re-
quirements, fairness robustness should be acknowledged to ensure
that more specific guidelines effectively address d-hacking.

4 ATTENTION TO ROBUSTNESS IN
ANTI-DISCRIMINATION LAW

Consideration of discrimination robustness measurement has im-
plicitly existed in traditional discrimination law. Discrimination
law, particularly the disparate impact doctrine, has long been pre-
occupied with the robustness of demonstrating and measuring
disparities for the purpose of identifying a discriminatory policy.
Discrimination claims often rely on the statistical demonstration
of disparities, raising concerns about the accuracy and robustness

of these measurements. While individual treatment and intentional
discrimination cases can focus on specific instances of discrimi-
natory conduct, both disparate impact and systematic disparate
treatment claims typically involve aggregate statistical analysis.

This section offers an overview of U.S. discrimination law and
the role of statistics, especially in establishing a prima facie case of
disparate impact.3 We then explore longstanding debates within
traditional discrimination law on the robustness of disparity claims.
The traditional focus of robustness was primarily to safeguard
against spurious lawsuits, and therefore acted as a way to screen
and scrutinize plaintiff claims. We argue that similar to the way
traditional anti-discrimination law has required plaintiffs to demon-
strate that measured disparities are not merely products of random
variation and particular measurement choices, entities claiming
their models are fair should face comparable scrutiny. They must
prove that their fairness metrics are robust and reliable. While the
analysis below discusses a number of robustness tests that have
long existed in traditional discrimination law, they are not meant to
reflect the full extent of AI robustness testing. Rather, the examples
of robustness are meant to demonstrate that robustness testing in
discrimination has long-existed, strengthening the case for devel-
oping appropriate AI robustness testing to address d-hacking.

U.S. Discrimination Law and Disparate Impact. Discrimination
law in the United States comprises a network of federal and state
(sometimes even municipal [5]) laws designed to address discrimi-
nation in various domains by both private and public actors. At the
constitutional level, the Equal Protection Clause of the Fourteenth
Amendment prohibits states from denying any person within its
jurisdiction equal protection under the law. At the federal level
there are a number of discrimination statutes that restrict both
government and private actors including the Civil Rights Act of
1964, dealing with employment and fair housing, the Age Discrimi-
nation in Employment Act (ADEA), the Americans with Disabilities
Act (ADA) and the Equal Credit Opportunity Act (ECOA). In the
context of voting, the Voting Rights Act of 1965 aims to end racial
discrimination in voting.

In some domains of discrimination law, like employment and fair
lending, there is a prohibition on both disparate treatment, dealing
with intentional discrimination or a direct conditioning of a deci-
sion on a protected characteristic, and disparate impact, addressing
facially neutral policies that create unjustifiable disparities on the
basis of protected characteristics.

In the landmark Supreme Court decision, Griggs v. Duke Power
Co. [77] and subsequent case law, courts laid out the basic burden
shifting framework of disparate impact. In disparate impact litiga-
tion, the plaintiff has the initial burden to demonstrate a causal
connection between the defendant’s policy and the disproportion-
ate effect on a protected class. Upon establishing a prima facie case,
the onus shifts to the defendant. The defendant can counter by
challenging the plaintiff’s statistical evidence or by demonstrating
that the disputed practice reflects some business necessity [40].
Lastly, if it is shown that the legitimate business goal of the policy
can still be achieved by a practice that is less discriminatory, the

3Although not our focus, it is important to note that some disparate treatment cases
that make pattern claims rather than claims about an individual action can also rely
on statistical evidence. See discussion in [20, 74].
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defendant faces liability. This last step is often referred to as the
“less discriminatory alternative” and requires that even if a practice
is justified, there still must not be an alternative way to achieve
that business goal that is less discriminatory [15, 41]. Traditionally,
discussions of robustness have centered around the first stage of a
disparate impact claim—the prima facie showing of disparities.

4.1 Robustness in Disparate Impact Claims
There are several ways in which traditional discrimination law
has been concerned with the robustness of the measurement of
disparities supporting a discrimination claim. Traditionally, robust-
ness requirements were primarily considered as a way to constrain
claims of discrimination by plaintiffs. By ensuring that disparities
documented by the plaintiff reflect true differences in treatment
of groups and not an artifact of some non-generalizable example,
courts were able to prevent spurious claims.

It is important to note that traditional claims of discrimination
relied on metrics that differ from many of the current algorithmic
fairness metrics that look at predictive accuracy [45, 60]. For exam-
ple, fair lending often considered differences in the decision rates
(such as whether to approve a loan application or not). Thus, the
Adverse Impact Ratio (AIR) emerged as a standard way to consider
disparities by simply comparing the approval rates across groups.
For continuous measures, such as differences in interest rates, the
traditional measure has been the Standardized Mean Difference
(SMD) which is the difference between the average outcome di-
vided by the standard deviation across groups [34]. The AIR and
SMD measures of disparities are related to what is referred to in
the algorithmic fairness literature as “statistical parity” in which
outcomes for different populations are compared [see e.g., 71, “In
the context of credit-decision making, evaluations of fairness tend
to focus on statistical parity”]. These measures differ from some
of the measures of fairness considered in the algorithmic fairness
literature, which often focus on error rate measures of prediction
of default that are used for lending decisions.4 Below we provide
several examples of robustness discussions in disparate impact
doctrine:

Robustness in comparison group. A case of disparate impact relies
on the claim that a protected group has been disproportionately
impacted by a practice compared to another baseline group. A key
question for this comparison is how to define or identify this base-
line group to which the protected group is compared. In case law,
this is often referred to as a group who is “similarly situated.” As pre-
viously pointed out by a commentator: “This raises many complex
and important questions in the context of fair lending. For example,
whether the comparison group involves credit applicants or poten-
tial credit applications. Another important question is around who
is similarly situated” [55]. In fair lending and employment discrimi-
nation this can raise challenges over whether a relevant comparison
group are actual applicants or potential applicants. Similarly, in the
context of employment discrimination, comparing the impact of

4There continues to be significant debate over the extent to which error rates should be
the metric for discrimination in general (see [45]) and whether they are used in practice
by lenders in the context of fair lending. See [34](“Stakeholders report substantial
variance in the extent to which alternative fairness metrics such as predictive accuracy
by group are being used today”)

a policy on a protected class with its impact on the general pop-
ulation might not be appropriate if the general population is not
representative of the qualified job applicant pool.

Robustness in magnitude of disparities. Courts have typically
required that a practice be shown to cause “substantial” or “sig-
nificant” disparities for a disparate impact claim [86]. One way
that this requirement has been interpreted is that a plaintiff needs
to demonstrate that the magnitude of disparities are practically
meaningful. In the context of employment discrimination, this re-
quirement is often associated with the “four-fifths” rule according
to which if the magnitude of the ratio of selection rate of a hiring
practice for the protected group and the baseline group is below
four-fifths, the hiring practice is discriminatory. The four-fifths
rule, also known as the 80% rule, was first laid out in the U.S. Equal
Employment Opportunity Commission (EEOC) guidelines [3] and
has been adopted by several courts. Courts [78] and commenta-
tors [64, 85] have highlighted that this ratio should be regarded as
more of a rule of thumb than a definitive test for identifying dis-
parate impact. Nonetheless, the rule demonstrates the importance
of magnitude when considering disparities.

Robustness in statistical significance. In addition to robustness in
magnitude of disparities, courts have emphasized the requirement
that claimed disparities be statistically significant for a showing of
discrimination. This dimension of robustness relates to the confi-
dence in the disparities identified rather the significance in terms
of their magnitude [81]. The 2009 Supreme Court decisions Ricci
v. DeStefano [78], for example, explains that a prima facie case of
disparate-impact liability requires a “threshold showing of a signif-
icant statistical disparity” [1, 82].5 The reason courts often require
the showing of statistical significance is the assumption that even
if disparities are demonstrated on a certain population, if that dis-
parity has a moderate probability of occurring by chance there is
insufficient evidence of disparate impact [38].

Despite the repeated requirement that disparities demonstrate
some level of statistical significance, courts and regulators have
consistently avoided providing a specific and generally applicable
statistical test. For example, the Supreme Court has stated that: “We
have emphasized the useful role that statistical methods can have
in Title VII cases, but we have not suggested that any particular
number of “standard deviations” can determine whether a plaintiff
has made out a prima facie case in the complex area of employment
discrimination. Nor has a consensus developed around any alter-
native mathematical standard. Instead, courts appear generally to
have judged the “significance” or “substantiality” of numerical dis-
parities on a case-by-case basis” [86]. Similar language exists in the
Department of Housing and Urban Development’s 2023 Disparate
Impact Rule: “HUD further declines to set statistical standards, in-
cluding statistical thresholds, to require localized statistics, or note
a ‘significance’ requirement [83].

Robustness in causality. In the Supreme Court decision from 2015,
Inclusive Communities, the requirement that the plaintiff show a
robust causal connection between the disparities and challenged
policy was laid down as a key requirement of the first stage of a
5Note that even the EEOC guidelines that discuss the four-fifth rule still state that
smaller differences can be disparate impact if they are statistically significant.
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disparate impact claim [79]. According to the court “a statistical
disparity must fail if the plaintiff cannot point to defendant’s policy
or policies causing that disparity,” a requirement the court refers as
a “robust causality requirement.” This robustness requirement can
create meaningful hurdles for plaintiffs, especially when it is hard to
isolate the impact of any individual policy [32]. The Supreme Court
has also discussed how a a robust causality requirement ensures
that “[r]acial imbalance . . . does not, without more, establish a
prima facie case of disparate impact and thus protects defendants
from being held liable for racial disparities they did not create” [2].

These examples of robustness requirements in disparate impact
law demonstrate the sensitivity of traditional discrimination law
to the inadequacy of point estimates in establishing generalizable
conclusions. While we use this analysis to demonstrate the pre-
existing notion of robustness in discrimination law, addressing
d-hacking shifts the focus of robustness to deployers of AI systems
who are seeking to establish that their systems are fair and non-
discriminatory. As the focus of AI regulation shifts toward proactive
auditing and monitoring of AI for fairness purposes, discrimination
robustness requirements should no longer center on the burden on
plaintiffs but on firms making affirmative claims about the fairness
and discrimination of the tools they utilize. Moreover, the types
of robustness testing needed to address d-hacking go beyond the
examples above, which do not address robustness concerns related
to distribution shift or changes in training data, for example.

5 POLICY IMPLICATIONS AND
RECOMMENDATIONS

While a comprehensive discussion of the regulatory framework
and guidance needed to address the risks of d-hacking is beyond
the scope of this paper, in this section we offer several policy rec-
ommendations for preventing d-hacking in high-stakes domains. It
is crucial to limit the extent to which deployers can, knowingly or
unknowingly, inflate their fairness measurements when reporting
on their system’s discrimination metrics. While existing regula-
tions give some attention to robust fairness assessments and bias
mitigation—highlighting the need for ongoing assessments, stan-
dardization of testing metrics, and replicable AI assessments—we
argue that more concrete recommendations are necessary. To this
end, we provide several non-exhaustive suggestions.

Applying Performance Robustness to Fairness. At a minimum,
we suggest that techniques used to determine whether or ensure
that a model will perform well with regards to accuracy or perfor-
mance should also be applied to fairness measures. For example,
performing cross validation and calculating confidence intervals
over fairness performance should be common practice for model
fairness measurement. This should be straightforward, as most of
the necessary infrastructure for such calculations already exists.
Similarly, methods that maintain model accuracy across various
training setups or treatment distribution perturbations—such as
using ensembles, distributionally robust optimization, or trans-
fer learning—should be adapted for fairness purposes. Sections 2.1
and 2.2 discuss several methods to augment or ensure generalization
of fairness performance during deployment. Ideally, these methods
would be tested more systematically on real-world AI systems and

then integrated into training workflows. Although this approach
requires a significant investment, it mirrors the commitment made
to maintain accuracy in these systems.

Open Fairness API. For systems where deployment scenarios may
be extremely varied—for example vendors which sell a base system
to users with many different application areas— vendors should
provide a non-expert usable API to test deployment data for fairness.
If no labeled data is available from the deployment distribution and
labels are needed for the desired fairness definition, companies
should provide systems that allow users to easily manually label a
small amount of their data for testing.

Documentation of Tests and Pre-specification. We also believe
there are lessons that can be learned from our initial analogy to p-
hacking and the solutions that have been addressed to mitigate the
practice and its harm [67]. For example, deployers could be required
to record the various analyses they conducted before selecting the
model and dataset they used for auditing. This could reduce the
incentives to knowingly game fairness metrics and prevent repeated
testing for the purpose of obtaining a specific result. This includes
reporting on exploratory analyses separately from analyses that are
used to report final metrics. Another strategy to prevent p-hacking,
which could be adapted for d-hacking, is the pre-registration of
intended analysis. In the case of model deployers, they can register
upfront and commit ahead of time to the framework they intend to
use for testing for fairness and discrimination, requiring them to
specify in advance the procedure they intend to utilize. While pre-
registration has important limitations in non-experimental settings,
as has been discussed in the context of observational social science
studies [49], it nonetheless provides an avenue of communicating
fairness testing intentions ex ante.

Discrimination Stress Testing. In settings where discrimination
law is well-established and there is regulatory oversight, fairness
testing could be standardized and extended to include regulator-led
testing. “Discrimination stress-testing,” proposed in the context
of fair lending [43], provides an ex ante framework for testing
models on a hypothetical set of individuals. Rather than relying on
measuring of fairness and discrimination in the validation dataset
of the deployer, under discrimination stress-testing the regulator
would apply the model to some hypothetical population unknown
ahead of time to the model deployer. Similar to bank stress-testing,
where the financial institution’s health is tested under hypothetical
scenarios that are often not known in advance to the bank, with
discrimination stress-testing the exact data set used to measure
disparities could be kept confidential so that model deployers are
limited in their ability to create models that minimize disparity
for the specific data set alone. We note that there has been work
documenting the downsides of confidential datasets for accuracy
testing [69], where large swaths of machine learning models were
able to overfit even for an unknown test set. However, steps can be
taken to prevent or mitigate such overfitting, such as updating the
hidden discrimination test set regularly, or using a group of test
sets.
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6 RELATEDWORK
In addition to the technical work summarized in Section 2 of this
paper, there have been several works recommending various ap-
proaches to algorithmic bias assessments. While this work centers
very specifically on the potential for discrimination-hacking and
how current regulation responds to that possibility, our piece aligns
with some concerns raised in recent algorithmic auditing literature,
namely, concerns and limitations around internal audits [24, 66],
calls for assessment and monitoring throughout model deploy-
ment [17], and the possibility for model developers and systems
users to work together to assess an algorithmic system [73]. While
several papers call for fairness testing over time, insinuating some
concern for robustness to distribution shift, and also call for adver-
sarial testing [52, 66], suggesting that it is important for a model to
perform well in unseen environments, very few papers particularly
point to the need for robust fairness testing. Our paper contributes
to this literature by pointing out the possibility for discrimination-
hacking, the insufficient nature of the regulatory response to date,
and what steps we might take to prevent it.

This paper is also related to the growing literature on algorithmic
impact assessments (AIAs). In recent years, scholars across a variety
of disciplines have proposed algorithmic impact assessments (AIAs)
as a promising means for evaluating several metrics–including al-
gorithmic fairness and discrimination–in practice. Several of these
proposals stress the temporal robustness concern, by requiring that
AIAs have “periodic revisiting even after their implementation” [21]
and that they be “continuous” and include “ongoing assessment
and performance evaluation” [50]. The AI Now Institute proposal
goes further by suggesting the AIA be renewed every two years
and sets down processes for monitoring [68]. Other commentators
have raised other issues related to the robustness of fairness met-
rics, such as whether they adequately map onto real harm [58],
whether they are an appropriate optimization object when con-
sidering prospective harm [64], or the importance of independent
curation of the testing dataset to avoid selective data sampling [44],
and the overall concern that deployer discretion and incentives
structures may undermine the effectiveness of AIAs [72]. Our focus
goes beyond concerns of temporal robustness by discussing how
the many degrees of freedom facing deployers can lead to fairness
metrics that do not generalize, whether by design or by inattention
to robustness. We highlight the need for future developments in
AIA frameworks to concentrate more on addressing the risks of
d-hacking and the mitigation of associated harms.

7 CONCLUSION
This paper highlights the issue of discrimination-hacking (d-hacking)
in AI systems, where the brittleness of fairness measurement and
mitigation can be exploited, intentionally or unintentionally, to com-
ply with responsible AI regulation while still deploying biased sys-
tems. We demonstrate that, although historical anti-discrimination
laws have considered the robustness of discrimination claims, this
consideration has been primarily in the context of screening and
limiting such claims. As AI deployers increasingly make represen-
tations about the fairness of their systems, either voluntarily or
as mandated by law, they should be required to demonstrate the
robustness of their measures. Despite the risks associated with

d-hacking, current regulatory frameworks fall short in requiring
robust bias and discrimination measurements, leaving them vulner-
able to d-hacking under the guise of compliance.

8 POSITIONALITY STATEMENT
The authors on this work come from different disciplines, ranging
from computer scientists to law professors. While this interdisci-
plinary team does have expertise over computer science and certain
aspects of anti-discrimination law, we do not have expertise all ar-
eas that are pertinent to the problem of determining the best course
for AI regulation. While this paper focuses primarily on the le-
gal doctrines and institutions in the U.S., we recognize that key
developments in AI regulation of fairness and discrimination are
happening outside of the U.S., and that other countries have devel-
oped discrimination doctrines that can shed light on the issue of
robustness. We look forward to, and are excited by the prospect of,
collaborating with scholars with expertise outside of the U.S. in the
future.

9 RESEARCH ETHICS AND SOCIAL IMPACT
STATEMENT

The development of this work did not require any data collection.
All datasets used were publicly available, on licenses suitable for
public use. Since our experimentation was minimal, the majority
of our ethical considerations concern the potential impacts of our
paper.

Some potential negative impacts of our work include the possibil-
ity that the adoption of our policy recommendations will still lead
to a checklist-based approach to algorithmic auditing and bias miti-
gation that does not account for potentially larger issues around AI
system deployment, such as issues of AI functionality [65]. While
this may be a risk, we note that our proposal is not the only tool
we have to combat inequitable algorithmic systems. We can, and
should, use a variety of methods to prevent algorithmic inequity.
Further, we hope that despite this risk, the added attention to robust
fairness evaluation will bring to light more discriminatory systems
that need to be changed than it would let discriminatory systems
slip under the radar.
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A APPENDIX
A.1 Experimental Details.
For all experiments, we used the sklearn and Fairlearn [12] package
to train SVM, Logistic Regression, Random Forest, and Decision
Tree classification models with their default parameters on the rel-
evant datasets. We train the models to enforce demographic parity
using the gridsearch method, with a gridsize of 10, using the default
parameters for the demographic parity constraint. For the cross-
validation experiments, we used the German Credit Dataset [46]
(n=1000), and the Boston HMDA dataset as gathered and cleaned
in [43] (n=2754). For the distribution shift experiment, we used the
same HMDA dataset, and also the ACSIncome dataset from Cali-
fornia (n=195665) and Tennessee (n=34003), both from 2018 [28].
The German Credit dataset was not well set up for a distribution
shift experiment (there were no clear sub-distributions within the
data), so we substituted in the ACSIncome dataset.

For the cross validation experiments, we set a random seed of
zero at the top of a Jupyter Notebook. We then trained ten differ-
ent SVM, Logistic Regression, Random Forest, and Decision Tree
models (with default parameters for both sklearn and Fairlearn, as
explained above) over ten different random 80/20 train-test splits
of the data. In our results, we report the average test accuracy and
fairness over these train/test splits for all four models, as well as
the test accuracy and fairness for the iteration where the least fair
model on average performs the best with respect to fairness.

For the distribution shift experiments, we would train and test
each of the four models on one distribution (D1) and test its “deploy-
ment” behavior on a dataset with some distribution shift. For the
HMDA [43] dataset, we train and test the model on rows from the
Boston Suffolk county (D1), and simulate deployment behavior on
more rural region in the greater Boston area (D2), whereas for the
ACS Income dataset [28], we train and test on data from California
(D1), and then simulate deployment in Tennessee (D2). We trained
and tested on a random split of the data (random seed of 42), which
was 10% of the California data for training and 5% for testing, and
10% of the Tennessee data for the deployment set.

A.2 Additional Results on Fairness
Gerrymandering.

One related work which we draw particular attention to distin-
guish from is Kearns at al [51]—this work addresses a different
failure mode of fairness enforcement. Namely, the main concern
of Kearns et al. [51] is that a classifier that appears fair across cer-
tain groups (black/white and men/women) may actually be unfair
across unspecified subgroups (black men/white women). In con-
trast, our main concern is that a classifier may appear to be fair
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Model Type Average DD (Test) Iteration 1 DD (Test)
Decision Tree 3.22% 6.37%
Logistic Regression 9.85% 0.85%
Random Forest 8.25% 3.70%
SVM 4.55% 2.88%

Table 3: Left column: Average demographic disparity (DD)
for different models trained to reduce demographic disparity,
specifically with the fictitious play algorithm guaranteeing
subgroup fairness, implemented in the GerryFair package
by Kearns et al., evaluated on the model’s test set over five
different train/test splits. Right column: the demographic
disparity for each model for iteration 1. Note that the Logis-
tic Regression model has the lowest demographic disparity
in iteration 1, but the highest on average, leaving open the
possibility of d-hacking. The results are over the German
Credit dataset.

in development and perform unfairly at deployment (e.g., due to
overfitting). To highlight this difference, we performed additional
experiments to demonstrate the potential for d-hacking even when
using fairness training methods designed to mitigate fairness gerry-
mandering [51]. Similar to Section 2.1 of the main paper, we created
5 random training sets and compared four model types (Decision
Tree, Logistic Regression, Random Forest, SVM) after training them
to enforce subgroup fairness using the GerryFair package [51].
While the Logistic Regression model has the lowest DD of 0.83% on
Iteration 1 (out of a 0.83-6.37% range across models), it actually has
the highest average DD of 9.85% across all training sets (out of a
3.22-9.85% range). This demonstrates how models may exhibit low
unfairness on a particular training set due to overfitting, but fail
to generalize that fairness. Without robustness testing, companies
could take advantage of this to artificially report low unfairness.
Table 3 shows the results on the German Credit dataset. The left
column shows the average demographic disparity (DD) across the 5
training sets for each model type. The right column shows the DD
for each model type on just the first training set (Iteration 1). Our
results show d-hacking can still occur even using such fair training
methods.

A.3 Deep Model Results
While we focus in the main paper on simpler models, here we
provide evidence that deep models are vulnerable to d-hacking as
well— as is consistent with related work demonstrating that more
complex models exhibit more prediction instability over training
environment perturbations than simpler models [14]. Our results
are presented in Table 4.

Our experimental methodology is the same as laid out in themain
paper: for each model type (in this case, different architechture),
we train ten different models over ten random train-test splits, and
then calculate the accuracy and demographic disparity for each
individual model as well as the average across all ten models. For
all experiments, we used the sklearn and Fairlearn package to train
four different Neural Network classification models with varying
architectures. We train the models to enforce demographic parity
using the GridSearchmethod, with a grid size of 10, using the default

parameters for the demographic parity constraint. All models use
ReLU activation in the hidden layers, sigmoid activation in the
output layer, and are compiled with the Adam optimizer, binary
cross-entropy loss, and accuracy as the evaluation metric. The four
Neural Network architectures are defined as follows:

• ’Neural Network 1’: One hidden layer with 100 units.
• ’Neural Network 2’: Two hidden layers with 100 and 50 units,
respectively.

• ’Neural Network 3’: Three hidden layers with 100, 50, and
25 units, respectively.

• ’Neural Network 4’: Three hidden layers with 100 units each.
We set a random seed of zero at the top of the Jupyter notebook for
reproducibility. We then trained the four Neural Network models
over ten different random 80/20 train-test splits of the data. In our
results, we report the average test accuracy and fairness over these
train/test splits for all four models, as well as the test accuracy and
fairness for the iteration where the least fair model on average
performs the best with respect to fairness.

We see that, as in the results for the main paper, individual train-
ing iterations can have deceptively low disparity (i.e., appear more
fair), while actually performing quite poorly in terms of fairness
on average over ten train-test splits. In particular, this can lead to
choosing a model which appears to be the fairest on one iteration
but is actually the least fair over ten train test splits— for example,
on the HMDA data in Table 4, note that there exists an iteration
where Neural Network 4 has the lowest disparity, but its average
disparity is the largest, and over twice that of the lowest average
disparity model.
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Dataset Model Type Avg DD (Test) Avg Accs (Test) Min. It. LR DD (Test) Min It. LR Accs (Test)

HMDA

Neural Network 1 6.97% 91.14% 6.68% 91.65%
Neural Network 2 5.18% 91.32% 4.31% 92.56%
Neural Network 3 8.05% 90.93% 0.86% 91.47%
Neural Network 4 10.78% 91.83% 0.69% 91.83%

German Credit

Neural Network 1 8.60% 72.40% 11.81% 70.00%
Neural Network 2 9.39% 71.05% 0.40% 67.50%
Neural Network 3 9.27% 70.45% 1.09% 68.00%
Neural Network 4 8.78% 71.55% 6.74% 68.50%

Table 4: Left two columns: average demographic disparity (DD) and accuracy for different models trained to reduce demographic
disparity, evaluated on the model’s test set over ten different train/test splits. Right two columns: the demographic disparity
and accuracy for the iteration where the model which is worst on average reached the lowest unfairness over the ten runs. The
top four rows indicate results for the HMDA dataset, and the bottom four for the German Credit dataset.
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