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Orthogonalizing Inputs
Talia B. Gillis

tbg2117@columbia.edu
Columbia University
New York, NY, USA

ABSTRACT
This paper examines an approach to algorithmic discrimination
that seeks to blind predictions to protected characteristics by or-
thogonalizing inputs. The approach uses protected characteristics
(such as race or sex) during the training phase of a model but masks
these during deployment. The approach posits that including these
characteristics in training prevents correlated features from acting
as proxies, while assigning uniform values to them at deployment
ensures decisions do not vary by group status.

Using a prediction exercise of loan defaults based on mortgage
HMDA data and German credit data, the paper highlights the limi-
tations of this orthogonalization strategy. Applying a lasso model,
it demonstrates that the selection and weights on protected charac-
teristics are inconsistent. At the deployment stage, where uniform
values for race or sex are given to the model, the variations between
models lead to meaningful differences in outcomes and resultant
disparities.

The core challenge is that orthogonalization assumes an accurate
model estimation of the relationship between protected character-
istics and outcomes, which can be isolated and neutralized during
deployment. In reality, when correlations are pervasive and pre-
dictions are constrained by regularization, feature selection can
be unstable and driven by the efficiency of the prediction. This
analysis casts doubt on the continued reliance on input scrutiny as
a strategy in discrimination law and cautions against the myth of
algorithmic colorblindness.

ACM Reference Format:
Talia B. Gillis. 2024. Orthogonalizing Inputs. In Symposium on Computer
Science and Law (CSLAW ’24), March 12–13, 2024, Boston, MA, USA. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3614407.3643698

1 INTRODUCTION
As algorithms are increasingly used in critical decision-making
domains, there is growing academic and policy attention to how to
capture the benefits of increased prediction accuracy while guar-
anteeing that outcomes are fair and non-discriminatory. The chal-
lenges of how to define fairness and how these notions align with
legal definitions of discrimination has been the focus of an exten-
sive algorithmic fairness literature in recent years [Caton and Haas
2020; Mitchell et al. 2021].
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This paper focuses on one approach to algorithmic fairness of
attempting to blind an algorithm to sensitive or protected charac-
teristics, such as race or sex, as well as their proxies. The approach,
which I refer to as ‘orthogonalizing inputs’ seeks to eliminate the
direct and indirect effects of a protected characteristic on a decision
by using the predictive power from input variables that is orthogo-
nal to protected characteristics. The conceptual foundation of this
strategy was notably developed by Yang and Dobbie [2020]1 who
build on a framework developed by Pope and Sydnor [2011]. At
the heart of this approach is the use of a protected characteristic,
like race, in the initial stages of training the prediction model, with
a focus on estimating and isolating the impact of race on the pre-
dictive outcome. According to the approach, this prevents other
inputs that correlate with the protected characteristic from acting
as proxies for the protected characteristic. Then, at the deployment
stage when the prediction is used for decision-making the protected
characteristic of individuals can be substituted for a uniform value
across all groups. This ensures, according to the approach, that the
algorithm is devoid of both direct and indirect proxy influences of
race.

This paper argues that the orthogonalization approach fails to
neutralize the direct and indirect impact of protected character-
istics in predictions primarily due to its inability to estimate and
isolate the impact of a protected characteristic on predictions in
many settings. Although Yang and Dobbie [2020] focus on a linear
regression setting, I consider the application of orthogonalization
in the machine-learning context. I argue that orthogonalization
heavily relies on accurately estimating the decision weights (or
coefficients) of a protected characteristic in prediction models, en-
suring the impact of a protected characteristic is fully accounted for
at deployment during decision-making. Yet, in many settings, espe-
cially with high-dimensional data featuring ubiquitous correlations,
the weight assigned to a protected characteristic might reflect its
tenuous relevance to the prediction and not a reflection of the true
estimate of the underlying relationship between a feature and the
predicted outcome.

Through a simulation exercise, based on the analysis in Mul-
lainathan and Spiess [2017], I underscore the complexities associ-
ated with the orthogonalization technique rooted in the sensitivity
of feature selection to noise in the training dataset. Focusing on a
prediction of a borrower’s default risk using a lasso model, I show
that the model does not consistently select the feature ‘race’ or ‘sex’
when provided this feature at training and that even when selected
for the prediction function, the weight on the feature is inconsistent.
The first exercise uses data reported under the Home Mortgage
Disclosure Act (HMDA) on mortgage applicants, to which I add
simulated default rates. The second exercise uses the German Credit
data [Dua and Graff 2017], frequently in computer science research,

1Yang and Dobbie refer to this as the “colorblinding-inputs” algorithm, at page 346.
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containing loan records of clients at a German bank. The result of
these exercises is that the implementation of the orthogonalization
approach may yield different results that depend on small and ran-
dom differences in the training dataset. While my focus is on the
variability of weight on protected characteristics arising from small
and random differences in the training dataset, variability could
potentially be much greater in cases where there is a difference
between the training and deployment populations, such as with
demographic shift [Giguere et al. 2022], covariate shift [Rezaei et al.
2021] and label shift [Lipton et al. 2018b].

The algorithmic blinding approach of orthogonalization merits
special attention. In the algorithmic fairness literature the short-
comings of algorithmic blinding were documented early on and
some scholars have suggested that blindness should not be treated
as an algorithmic fairness notion at all [Makhlouf et al. 2021, see
e.g.,]. However, the dominance of scrutinizing inputs as a way to
approach algorithmic discrimination persists in legal and policy
debates [Gillis 2022]. The recent Supreme Court decision in Stu-
dents for Fair Admissions [SFF 2023], signifies the ascendancy of
race-neutral interpretations in discrimination law, potentially influ-
encing AI decision-making and domains that increasingly rely on
algorithms like employment and lending decisions.2 Given these
prevailing perspectives, a thorough examination of orthogonal-
ization, seen as an advanced blinding method, is imperative. This
paper aims to spotlight the inherent challenges and inefficacies in
pursuing fairness through neutralizing inputs.

2 RELATEDWORK
This paper discusses a particular approach for verifying that algo-
rithmic predictions are fair and non-discriminatory and therefore
sits at the intersection of the technical algorithmic fairness litera-
ture and discussions of algorithmic discrimination in the law and
policy literature. The broader literature on defining, measuring, and
ensuring fair algorithms has been surveyed recently by Mitchell
et al. [2021], Caton and Haas [2020] and Pessach and Shmueli
[2023], among others. These methodologies are typically catego-
rized by the phase at which they intervene in the machine learning
pipeline. Notably, orthogonalization, the focal point of this paper,
is a pre-processing method, emphasizing fairness by blinding the
deployment algorithm to protected characteristics and their proxies
[Kusner et al. 2017].

Drawing inspiration from the field of econometrics, the cor-
nerstone of orthogonalization, as articulated in Yang and Dobbie
[2020] and Pope and Sydnor [2011], is countering potential biases
stemming from correlated traits acting as proxies for the protected
attributes. This builds upon the econometrics literature addressing
‘omitted variable bias’ and the broader repercussions of variable
exclusion in regression analyses[Angrist and Pischke 2009; Jung
et al. 2018].

Distinguishing the use of protected characteristics at the train-
ing and deployment stages, a key feature of the orthogonalization
2The case centered on college admissions and Equal Protection Clause, however, it
potentially speaks more generally to the consideration of race. In particular, Justice
Gorsuch’s concurring opinion argued that Title VI of the Civil Rights Act bars affirma-
tive action and that Title VII, employment discrimination, contains similar language.
Because of the close relationship between employment discrimination and fair lending,
such as Title VIII Fair Housing Act, this gestures towards Gorsuch’s understanding of
a race-blind requirement in other domains.

approach, has also been discussed in the algorithmic fairness litera-
ture. The division between training and deployment with respect
to the use of protected characteristics is partly driven by the re-
quirement, on the one hand, that decisions not vary on the basis of
protected characteristics, with the recognition, on the hand, that
many techniques to mitigate an the use of proxies requires aware-
ness of protected characteristics [Harned and Wallach 2019; Kim
2022]. Comparable strategies, termed Disparate Learning Processes
(DLPs), leverage protected traits in training but abstain from them
during deployment [Kamiran and Calders 2012; Kamishima et al.
2011]. These approaches have encountered criticism regarding po-
tential revelations of protected characteristics and their influence
on prediction accuracy [Lipton et al. 2018a]. Blindness to protected
characteristics has been criticized on other grounds, relating primar-
ily to the impact of blindness techniques on fairness of outcomes.
Kleinberg et al. [2018], for example, argue that genuine fairness
efforts, aimed at outcome equalization, should be race-aware even
during decision-making.

The paper also relates to legal debates surrounding the algorith-
mic omission of protected characteristics and their proxies, as well
as the challenges of adapting traditional discrimination doctrines
to algorithmic settings. While Yang and Dobbie [2020] advocate for
algorithmic blindness mandated by the Equal Protection Clause,
others suggest doctrines like ‘disparate impact’ may necessitate a
race-conscious approach [Bent 2019; Gillis 2022; Gillis and Spiess
2019; Kim 2022].

There has been some work to directly engage with the approach
in Yang and Dobbie [2020] and the foundational framework in
Pope and Sydnor [2011]. Key contributions include Bartlett et al.
[2021], who demonstrate the challenges of debiasing proxies, and
Altenburger and Ho [2019], who suggest that under certain circum-
stances, simple exclusion of protected traits might be preferable to
orthogonalization when applying the method to a random forest
algorithm.

In this paper, I focus on the implementation of the orthogonaliza-
tion approach in the machine learning setting and show the prac-
tical implications of the instability of feature selection. Although
the Yang and Dobbie [2020] method originated in the linear re-
gression context, its adaptation to machine learning realms, where
correlations may be ubiquitous, remains under-explored.3 The need
to consider the application of the method to machine learning is
particularly important given its emergence as a policy solution to
AI discrimination [Prince and Schwarcz 2019]. My focus here is
on the disconnect between strategies targeting model estimation
and prediction technologies purely aimed at optimizing predictions,
illuminating the ensuing policy ambiguity.

3 ORTHOGONALIZING INPUTS
The starting point for the orthogonalization approach is that fair
and non-discriminatory decision-making requires that decisions
be blind to protected characteristics. While this position remains

3Pope and Sydnor [2011] apply their analysis to logit regression analysis but do not
consider machine learning models. Altenburger and Ho [2019] analyze the framework
using a random forest but do not consider the instability properties of the prediction.
Importantly, their use of ‘contentious’ and ‘correlated’ variables departs from the
original approach in Yang and Dobbie [2020].
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somewhat contentious [Kim 2022], may overlook the systemic in-
equalities and historical biases that shape features and labels [Gillis
2022] and could depend on the particular legal domain of discrimi-
nation law, the notion of some formal requirement of blindness to
protected characteristics, meaning that decisions do not vary on
the basis of these characteristics, is ubiquitous in computer science
literature and legal discussions.

The orthogonalization approach can be seen as a response to
the challenges of simply omitting a protected characteristics from
an algorithm’s inputs. The approach demonstrates how when a
protected characteristic is excluded, the coefficients or inputs that
correlate with the protected characteristic can partially reflect the
omitted protected characteristic, a statistical phenomena known
more generally as ‘omitted variable bias.’ This arises because vari-
ables that correlate with a protected characteristic can play a dual
role–a features’s predictive power might arise from its ability to
predict an outcome independent of a protected characteristic but
also from its role as a proxy for a protected characteristic. An exam-
ple might be the prediction of credit risk using employment history,
where employment history is correlated with race. A consumer’s
employment history may provide important information on credit
risk, however it may also act a proxy for race. Avery et al. [2012]
document, for example, how a credit file variable ‘average age of
accounts on credit report’ serves as a proxy for borrower age in a
prediction of loan performance in this way.4

The key distinction under orthogonalization is separating the
model training stage from the decision-making or deployment stage
with respect to the use of protected characteristics. Focusing on the
example of race, in the training stage the algorithm is race-aware
in the sense that the algorithm uses ‘race’ as one of its inputs. This
produces an estimate of the weight given to race in forming the
prediction. However, in the screening stage, meaning the stage at
which the prediction is applied to a particular person, the algorithm
is given an uninformative value of an individual’s race. This means
that even though ‘race’ was used to train the algorithm, there is no
differential treatment on the basis of race at deployment.

Formally, Yang and Dobbie [2020] consider a case in which we
are trying to predict outcome 𝑌𝑖 for individual 𝑖 , where there are
three types of inputs. There is the protected characteristic, such
as race, 𝑋𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑

𝑖
. Then there are inputs that correlate with race,

𝑋𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
𝑖

, and inputs that do not correlatewith race,𝑋𝑛𝑜𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
𝑖

.
Consider, for example, a lender looking to predict default risk of
loan applicants where some applicants are non-White minority ap-
plicants, 𝑋𝑛𝑜𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

𝑖
might be characteristics like ‘age’5 that are

not correlated with racial minority status, and 𝑋𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
𝑖

might
be applicant income and credit history that correlate with race. The
lender first uses past loans and their outcome (whether they were
defaulted on or not) to estimate a prediction model and then uses
this model to predict default risk for new applicants.

One possibility is to estimate a race-blind linear model:

4Avery et al. [2012] do not document the same proxy effect for race and gender.
Interestingly, Avery et al. [2012] refer to a situation where a variable’s predictive
power arises from acting as a proxy for a protected characteristic as ‘disparate impact’
and not ‘disparate treatment.’ This is surprising given that the proxy effect is arguably
leading to a direct conditioning on a protected characteristic.
5Note that in some settings, age itself could be a protected characteristic.

𝑌𝑖 = 𝛽0 + 𝛽1𝑋
𝑛𝑜𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
𝑖 + 𝛽2𝑋

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
𝑖 + 𝜖𝑖 (1)

Yang and Dobbie [2020] show that simply estimating a linear
model without race would mean that 𝛽2 would not only reflect the
direct impact of those features on the outcome but also some of the
weight of ‘race’ which has been omitted. They therefore argue that
the following linear regression should be estimated at the training
stage:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋
𝑛𝑜𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
𝑖 + 𝛽2𝑋

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
𝑖 + 𝛽3𝑋

𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑

𝑖
+𝜖𝑖 (2)

Estimating equation 2 produces coefficients 𝛽1, 𝛽2 and 𝛽3, where
𝛽2 no longer partially reflects the role of 𝑋𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

𝑖
as a proxy for

‘race.’ Applying the estimated function to predict default for future
borrowers would arguably trigger ‘disparate treatment’ prohibi-
tions as it treats borrowers differently on the basis of race. Therefore,
when applying this model to future borrowers, ‘race’ is set to the
same value for all borrowers, for example mean race (𝑋𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ),
so that the model does not distinguish between different racial
groups when implemented. Arguably, this satisfies the requirement
to not discriminate on the basis of race while preventing correlates
from serving as proxies for race.

4 ORTHOGONALIZATION APPROACH IN
PRACTICE

How would this framework apply in the context of machine learn-
ing? In their paper, Yang and Dobbie [2020] apply this method to an
ordinary least squares (OLS) or linear regression and do not demon-
strate their method in the machine learning context. Prince and
Schwarcz [2019] provide a general discussion of the method in the
context of artificial intelligence but do not discuss the implementa-
tion details.6 To assess the method’s efficacy in machine learning, I
will use the lasso algorithm owing to its analogous output charac-
teristics with linear regression. Future work should consider the
implications of the approach in other model classes.

I use two simulation exercises to consider how the orthogonaliza-
tion approachmight play out in practice. The first exercise considers
a hypothetical mortgage lender and relies on data reported under
the Home Mortgage Disclosure Act (HMDA).7 The second exercise
is based on the publicly available the German credit data used in
computer science research.8

4.1 HMDA Data
To demonstrate how this approach would play out in practice I
consider a hypothetical lender. This lender takes data on past loans
and loan performance to predict the default risk of new borrowers.
My hypothetical lender uses loan information reported bymortgage
lenders under HMDA to predict creditworthiness.

Specifically, I use the Boston Fed HMDA dataset with more than
40 variables (many of which are categorical, taking on a fixed num-
ber of possible values) to which I add simulated default rates. De-
fault rates are simulated because HMDA contains only mortgage
6Pope and Sydnor [2011] also focus on the application to an OLS regression but expand
the analysis to probit and logit regressions.
7Home Mortgage Disclosure Act (HMDA) (12 U.S.C. § 2801)).
8The dataset can be found at https://archive.ics.uci.edu/dataset/144/statlog+german+
credit+data.
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Figure 1: Distribution of predicted risk
The graph shows the distribution of predicted default probabilities for all borrowers in the
holdout set of 2,000 borrowers. The graph is cutoff at 10%, meaning that only borrowers
with a default risk of less than 10% are plotted. The vertical line is the median predicted
default probability (of the full sample, not just the borrowers with a risk below 10%).

application information and not mortgage performance informa-
tion. Simulated default rates are produced by a model that relates
application outcomes to borrower and loan characteristics which
are then calibrated to known default rates from the literature.9
Details on the Boston Fed HMDA dataset [Munnell et al. 1996] and
the model I use to simulate default rates can be found in previous
work [Gillis 2022; Gillis and Spiess 2019].

One important feature of HMDA reporting, is that mortgage
originators are required to report the race of a loan applicant so
that the HMDA dataset includes information onwhether a borrower
is a non-Hispanic White borrower or a minority borrower [Munnell
et al. 1996].

4.1.1 Simulation. The prediction of loan default as a function of
individual characteristics of the loan and applicant is made using a
lasso regression for its interpretability and similarity to a standard
linear regression. The algorithm is trained on a sample of 2,000 past
borrowers. This function can then be applied to new borrowers,
which is a subset of borrowers from the HMDA dataset.

In Figure 1 the model’s prediction function is applied to a holdout
set, meaning a subset of 2,000 borrowers that is drawn from the
same distribution but was not used to train the prediction function.
In the real world, this is likely to be a group of new applicants for
which the lender is deciding whether to extend a loan and at what
price. Borrowers who are to the left of the distribution have a lower
probability of default. The default probabilities can either be used
9Given this limitation of the data, the analysis should not be interpreted as an empirical
analysis of default rates but limited to the conceptual argument. One way to consider
the exercise is that the prediction is closer to a prediction of application outcomes
than of mortgage default. While the labels needed for this prediction are contained in
HMDA this type of prediction exercise lacks real world realism as lenders are unlikely
to build prediction models for their own loan decisions.

as thresholds for binary lending decisions or as a way to price loans
for credit risk.

To demonstrate the practical challenges in applying the orthogan-
lization method to machine learning I repeat the exercise of fitting
a model to the training data set 10 times, each time with a slightly
different training set. In the repeated training of the models, I in-
clude the ‘race’ feature so that the function can select ‘race’ as a
predictor and determine the weight on the feature.10 To create 10
comparable datasets with slightly different noise, I randomly draw
2,000 observations from my full dataset 10 times, in a procedure
similar to Mullainathan and Spiess [2017]. Because these 10 datasets
are randomly drawn from the same full sample, they should be sim-
ilar, although they are unlikely to be identical. I then fit a lasso
regression to each of the 10 training datasets and let the algorithm
choose which of the many characteristics to include in the model.

4.1.2 Results. When comparing the function trained on the 10
iterations of the training set the feature selection and weights vary.
Importantly, whether the model selects the feature ‘race’ in its
prediction function and the weight of ‘race’ varies by iteration.
Figure 2 plots the weights on the variable ‘race’ where each column
represents a different random draw from the data set, which re-
sulted in different prediction functions. We can see that for 8 of the
draws, the feature ‘race’ is not selected at all. In draw 5 the ‘race’
feature receives the largest weight of around −0.02, which can be
interpreted as meaning that non-Hispanic White borrower have a
predicted default probability that is 2 percentage points lower that
a racial minority borrower. Considering that the average default
probability is only 1.7%, this is a meaningful difference. Iteration 10
has a smaller weight of around −0.012, which can be interpreted as
a decrease of predicted default probability of 1.2 percentage points
for non-Hispanic White borrowers. The weights on ‘race’ in the
rest of the iterations is 0.

The results so far reflect the different weights on the ‘race’ vari-
able at the training stage. Because the orthogonalization approach
distinguishes between the use of a protected characteristic during
the training and deployment stages, we now consider how the pre-
diction functions are applied when the individual’s race is hidden at
the deployment stage. As discussed above, this would be achieved
by substituting the race of all new loan applicants with a uniform
value.

Applying the orthogonalization method would lead to different
results depending on the iteration. To see this, consider the resulting
predictions if after the training stage of the model we provide
uniform ‘race’ information at the screening stage. This would mean
that all applicants would receive the same ‘race’ value regardless of
their race such as mean race, 𝑋𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ,11 and that the weight on
this variable would be determined by the weight of the function that
was trained on the specific iteration of the training dataset. Once
we have the prediction for the 2,000 applicants we can examine the
disparities in default prediction for White and minority applicants.
These disparities would not be the result of a direct consideration
of an applicant’s race, as this information is not provided at the
10The ‘race’ feature in my simulation is a binary variable that equals 1 if a borrower is
non-Hispanic White and 0 if the borrower belongs to a racial minority, such as Black,
Asian or Hispanic.
11In this case 𝑋𝑟𝑎𝑐𝑒 = 0.8, because there are many more White borrowers in the
dataset.
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Figure 2: Weight on race feature
Each of the 10 columns represents a different random draw of 2,000 observations from the
full data, on which a lasso regression was fitted. The columns plot the weight the lasso
regression placed on the race variable, which is one of the 40 model inputs.

Figure 3: Disparities after orthogonalizing race
The top row shows the distribution of the risk predictions for non-HispanicWhite borrowers
and racial minority borrowers, from a lasso regression using all inputs. The graph on
the top left corner is the prediction from random draw 4 of the dataset, the graph at the
top in the middle is the prediction from random draw 5 and the graph on the top right
corner is the prediction from random draw 10 of the dataset for training purposes. The
bottom row shows the prediction when applicant race is substituted for a uniform value
of ‘mean race’ (0.8). The vertical lines represent the median predicted default probability
for non-Hispanic White borrowers and racial minority borrowers separately.

screening stage, but rather a result of the different distributions
of the other features (credit history, income, etc.) for White and
minority applicants.

Figure 3, plots the default probably separately for White and
minority applicants for 3 of the 10 iterations of training sets using
a holdout set not used for training the model, as if they were a new
group of loan applicants. The top row shows the disparities pro-
duced by iteration 4 (top left figure), iteration 5 (top middle figure)
and iteration 10 (top right figure) if we were to apply the prediction
function to new applicants including their race. Despite the lasso
being trained on very similar training datasets, the disparities for
White and minority borrowers are different in the three iterations.

In iteration 5, where ‘race’ is selected and receives a large nega-
tive weight, the disparities between White and minority borrowers
are greater than in iteration 4 where ‘race’ is not selection. The
disparities in iteration 10, where the weight is negative but of a
smaller magnitude than 5, disparities are larger than 4 but smaller
than 5. Note that even when ‘race’ is not selected, as in iteration 4,
there are still significant disparities between White and minority
borrowers.

The orthogonalization method would not allow the deployment
of the prediction function as reflected in the top row of Figure 3 and
would instead require that for the new applicants being considered
‘race’ be substituted with a uniform value for all applicants. The
lower figures reflect the predicted default disparities for the new
applicants when applying the orthogonalization method using the
value of ‘mean race’ instead of the individual’s true race.

For iteration 4, the left column of Figure 3, the top and bottom
row are identical, and the median forWhite and minority borrowers
does not change (the vertical lines represents the median for White
and minority borrowers). This is because in iteration 4, the variable
‘race’ has no weight so that substituting the characteristic does
not change the prediction function. Comparing iterations 5 and
10 reveals that reduction in disparities is more meaningful with
iteration 5 when substituting the ‘race’ variable for a uniform value,
which is what we would expect with a larger model weight. The
comparison of all three iterations demonstrates the inconsistency
of the method in reducing disparities and the remaining disparities
after orthogonalization.

The conclusion of this exercise is that even though the training
datasets of iterations 4, 5 and 10 are very similar, the lasso regression
made different choices with respect to the weight on ‘race.’ The
orthogonalization method, which uses the coefficient or weight on
‘race’ for the screening and deployment stage, will therefore yield
different results based on the random draw.12

4.2 German Credit Data
The second simulation also considers a hypothetical lender that
takes data on past loans and their performance to predict the default
risk of new borrowers. The experiment is based on the German
credit data [Dua and Graff 2017] used in computer science research
and frequently in machine learning credit scoring research [see
e.g., Dastile et al. 2020; Lin et al. 2012]. The dataset contains 1,000
observations with 700 borrowers classified as a ‘good’ credit risk
(creditworthy) and 300 as a ‘bad’ credit risk (not creditworthy).
There are 30 features for each borrower, including borrower ‘sex’
which will be the protected characteristic for this example. The
other features cover characteristics like income, age, employment,
marital status and information on assets and past credit.

4.2.1 Simulation. Similar to the HMDA simulation, a lasso will
be used to fit a prediction of creditworthiness (probability of ‘bad’
risk) using features from the training data set. The algorithm is
trained on a sample of 700 past borrowers and then applied to 300
new borrowers, which is a subset of borrowers from the German
credit dataset.

12For a general discussion of the instability with respect to the variables selected by
the lasso regression see Mullainathan and Spiess [2017] and for the application to fair
lending see Gillis and Spiess [2019].
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Figure 4: Distribution of predicted risk
The graph shows the distribution of ‘bad’ credit risk probability for all borrowers in the
holdout set of 300 borrowers. The vertical line is the median predicted default probability,

In Figure 4 the model’s prediction function is applied to a holdout
set, meaning a subset of 300 borrowers that is drawn from the
same distribution but was not used to train the prediction function.
Similar to the HMDA example, the exercise of fitting a model to the
training dataset is repeated 10 times, each time with a randomly
drawn training set. In the repeated training of the models, ‘sex’
is included as an input so that the function can select ‘sex’ as a
predictor and determine the weight on the feature.13

4.2.2 Results. Similar to the HMDA example, whether the model
selects the feature ‘sex’ in its prediction function and the weight of
‘sex’ varies by iteration. Figure 5 plots the weights on the variable
‘sex’ where each column represents a different random draw from
the data set and therefore a different prediction function. For 3 of
the draws, the feature ‘sex’ is not selected at all. There are 5 draws
for which there is a negative weight on ‘sex’ (with varying weights)
and 2 draws for which the sign of the weight flips to positive. To
understand the meaning of the weights on sex, iteration 4, for
example, puts a weight of roughly −0.05 on the feature ‘sex’ so
that being male is associated with a 5 percentage point decrease in
predicted default probability.

Here too, applying the orthogonalization method would lead to
different results depending on the iteration. At deployment, instead
of providing the applicant’s sex, the function is provided with the
mean sex value, 𝑋𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ,14 and the weight on this variable is
determined by the weight of the function that was trained on the
specific iteration of the training dataset.

13The ‘sex’ feature in my simulation is a binary variable that equals 1 if a borrower is
male and 0 if the borrower is female.
14In the German credit data, roughly 70% of the dataset is male so that 𝑋𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 =

0.7.

Figure 5: Weight on sex feature
Each of the 10 columns represents a different random draw of 700 observations from the
full data, on which a lasso regression was fitted. The columns plot the weight the lasso
regression placed on the sex variable, which is one of the 30 model inputs.

Figure 6: Disparities after orthogonalizing sex
The top row shows the distribution of the risk predictions for female and male borrowers,
from a lasso regression using all inputs. The graph on the top left corner is the prediction
from random draw 4 of the dataset, the graph at the top middle is the prediction from
random draw 7, and the graph on the top right corner is the prediction from random draw
8 of the dataset. The bottom row shows the prediction when applicant sex is substituted
for a uniform value of ‘mean sex’ (0.7). The vertical lines represent the median predicted
default probability for female and male applicants.

Figure 6, plots the default probably separately for female and
male applicants for 3 of the 10 iterations of training sets using a
holdout set not used for training the model, as if they were a new
group of loan applicants. The top row shows the disparities pro-
duced by iteration 4 (top left figure), iteration 7 (top middle figure)
and iteration 8 (top right figure) if we were to apply the prediction
function to new applicants including their sex. Despite the lasso
being trained on very similar training datasets, the disparities for
female and male borrowers are different in the three iterations. In
iteration 8, where ‘sex’ receives a small negative weight, the dispari-
ties between female and male does not change much at deployment.
In iteration 7, where the weight on ‘sex’ is positive, the disparity
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increases after deployment.15 In iteration is 3, where ‘sex’ receives
a negative weight, disparities decrease with substitution of sex for a
uniform value at deployment. Overall, this simulation exhibits even
greater variability than with the HMDA data, which may partially
be due to the smaller dataset.

5 DISCUSSION
The simulation exercises in the previous sections reveal a limitation
in how to interpret machine learning algorithms. In a standard
regression analysis, the coefficients represent some estimation of
the impact of the independent variables on the predicted depen-
dent variables. This is not necessarily the case with a lasso model.
Although the lasso regression output function looks similar to the
output of an OLS regression, it should be interpreted differently. Ma-
chine learning is constructed to optimize the prediction accuracy,
particularly in high dimensional data when there may be many
correlated features. Therefore, the fact that even small amounts
of noise in the data can change the variables that are selected by
the algorithm in forming the prediction may not matter as long as
the prediction accuracy is somewhat stable. When there are many
possible features that predictions can depend on, and algorithms
choose from a large, expressive class of potential prediction func-
tions, then many rules that look very different have qualitatively
similar prediction properties [Black et al. 2022]. Which of these
rules is chosen in a given draw of the data then may come down to
a flip of a coin.

One of the reasons the orthogonalization method goes wrong
in the machine learning context is because it essentially provides
a model different information at the deployment stage than what
it was trained on. The method asks the algorithm to optimize the
prediction when it has access to race or sex, only to restrict this
access when applying the prediction function. This may not be a
problem when the prediction was based on estimating the model,
thereby arguably isolating the effect of race or sex on the prediction.
However, when using a machine learning algorithm, the use of race
or sex is instrumental in optimizing the prediction accuracy and is
not a substantive evaluation of its contribution to the prediction.

In addition to the general instability of feature selection, it is
important to highlight that the selection of a protected character-
istic in a predictive model does not necessarily indicate a genuine
relationship between that characteristic and the outcome being
predicted. To illustrate this, consider a simplified example in the
context of predicting default probability, denoted as 𝑌 , for new
borrowers. Imagine a lender who can potentially assess borrowers
based on three characteristics: race 𝑅, income 𝑋1, and credit score
𝑋2. In the true, but unknown to the lender, model of default risk,
suppose the risk is a function of a linear combination of income
and credit score: 𝑌 = 𝑓 (𝑎𝑋1 +𝑏𝑋2). Assume also that race 𝑅 has no
direct relationship to default probability. However, income 𝑋1 and
credit score 𝑋2 might be correlated with race. For instance, certain
groups might, on average, have different income levels or credit
scores due to a variety of socio-economic factors.

15One way to intuitively understand this result is that the positive weight for male
borrowers can bring down the disparities where overall female borrowers are predicted
to default at higher rates. When this equalizing effect of ‘sex’ is not longer possible
because all applicants receive the same ‘sex’ value, disparities increase.

In an unconstrained scenario, a predictive model would ideally
use 𝑋1 and 𝑋2 to estimate default probability, without needing to
consider 𝑅. However, the situation becomes more complex when we
introduce a constraint, such as the one imposed by lasso regressions,
that can help prevent overfitting by penalizing the absolute size of
the regression coefficients. Consider a scenario where the tuning
parameter in the lasso regression is set in such a way that only
one variable can have a non-zero weight in the model. The model
might select either 𝑋1 or 𝑋2 for prediction. However, note that 𝑅
may potentially reflect information on both 𝑋1 and 𝑋2 in a manner
that is efficient for the regularized prediction function. Given this
possible advantage of the aggregated information reflected in 𝑅

over each of the other features separately, a prediction function may
choose the only feature without a true relationship to the outcome.

This thought experiment highlights two key points. First, the
instability in feature selection, particularly under constraints like
regularization, can lead to the inclusion of variables that do not
have a causal relationship with the outcome. Second, it demon-
strates that protected characteristics might be chosen not for their
direct relevance but because they inadvertently encapsulate other
relevant information in a condensed form. This should caution
us against using a method that relies heavily on estimating the
true relationship of a protected characteristic with the outcome at
the training stage as a way to account for the potential impact of
protected characteristics on decisions.

Limitations and Future Work. The simulation exercises in this
paper are limited in several ways. The HMDA data contains sim-
ulated default rates, limiting their interpretation to reflect real-
world default predictions. The German credit data, although it is
used frequently in computer science research, is a relatively small
dataset (1,000 observations) reported from a single bank. Future
work should consider the implications of the orthogonalization
approach on additional and potentially larger datasets. Moreover,
the exercises in this paper are limited to lasso predictions, that
are known for their instability. Future work could consider the
implications of the orthogonalization approach in additional model
classes.

6 CONCLUDING REMARKS
Applying the orthogonalization method to the machine learning
context creates practical and conceptual difficulties. Practically, the
variable selection of the lasso is unstable, and even small amounts
of noise lead to different variable selection. This could lead to dif-
ferences in disparities between groups based on small differences
in training datasets. Conceptually, a lasso algorithm is not meant
to estimate a model, as with an OLS regression, so that it is prob-
lematic to interpret the weights of different variables as reflecting
some underlying model, as the orthogonalization method does.

The implications of this exercise go beyond the specific example
of the orthogonalization approach and suggest deeper skepticism
around blindness approaches to fairness and the scrutiny of inputs
as a viable path for algorithmic discrimination law. Achieving the
underlying goals of discrimination law is likely to require both a
race-aware approach at deployment [Meursault et al. 2022] and a
direct measurement of decision outcomes [Gillis 2022]. Current law,
that risks adopting a myth of algorithmic colorblindness, should
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instead confront the practical and theoretical shortcomings of at-
tempting to sterilize inputs from protected characteristics.
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