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Using Shifts in Deployment and Operations to Test for Racial 
Bias in Police Stops†

By John M. MacDonald and Jeffrey Fagan*

There is a contentious debate about the extent 
of racial bias in street and highway stops, the 
most common form of police-civilian contact. 
Compared to whites, blacks are more likely to 
be stopped, searched, and frisked by the police 
(Pierson et al. 2017). Many studies focus on com-
paring racial differences outcomes that transpire 
after a police stop (Ridgeway and MacDonald 
2010, Neil and Winship 2019). Outcome tests of 
this form have a long history in the economics of 
discrimination literature (Becker 1957). Some 
scholars contend that conditional on a police 
stop, outcomes should be similar across race if 
the police are applying race-neutral standards 
(Knowles, Persico, and Todd 2001).

However, outcome tests are sensitive to omit-
ted variable bias that may be correlated with the 
race of the individual stopped (Neil and Winship 
2019). Infra-marginality presents an additional 
challenge (Ayres 2002; Simoiu, Corbett-Davies, 
and Goel 2017). The average outcome by racial 
group may be different from those at the margins 
of a stop outcome if there are racial differences 
in the underlying crime-suspect risk distribu-
tions. Proposed solutions to the infra-margin-
ality problem include estimating outcomes 
from stops involving different officer-civilian 
race pairs, using a threshold test of searches 
for different racial groups, or estimating racial 
differences in recovery rates from searches that 

* MacDonald: Department of Criminology, University of 
Pennsylvania, 3718 Locust Walk, McNeil Building, Suite 
483, Philadelphia, PA 19104 (email: johnmm@upenn.
edu); Fagan: Columbia Law School, Columbia University, 
Jerome Greene Hall Room 916, 435 West 116th Street, New 
York, NY 10027 (email: jaf45@columbia.edu). The opin-
ions expressed in the article reflect those of the authors only 
and not any other entity. We are grateful to Greg Ridgeway, 
Stephen Ross, Jennifer Doleac, and Felipe Goncalves for 
comments.

† Go to https://doi.org/10.1257/pandp.20191027 to visit 
the article page for additional materials and author disclo-
sure statement(s).

have similar ex ante  probabilities of recovering 
weapons (Anwar and Fang 2009; Antonovics 
and Knight 2006; Goel, Rao, and Shroff 2016; 
Pierson et al. 2017). These methods all rely on 
identifying assumptions that are not directly or 
easily testable. Also, changes in the factors that 
determine differences at the margins of a police 
outcome are difficult to observe. As a result, 
research that uses outcomes tests from police 
stops to test for racial bias typically relies on 
cross-sectional variation.

In this paper, we exploit a policy experiment 
in the New York Police Department (NYPD) to 
test for bias in police stops. The NYPD launched 
Operation Impact in 2003 to change the scale 
of officer deployments. High crime areas were 
designated as “impact zones” and saturated with 
recent police academy graduates. These officers 
were encouraged to stop, question, and frisk 
(SQF) crime suspects as part of the NYPD’s 
overall crime-reduction strategy (MacDonald, 
Fagan, and Geller 2016). We focus on the 
expansion of impact zones in Brooklyn and 
Queens in July 2007. We use geographic data 
on the boundaries of the impact zones and the 
specific locations of recorded SQF encoun-
ters to test for racial bias in the outcomes from 
police stops.1 We use a difference-in-difference 
(D-D) framework that exploits time and place 
varying sources of variation in police incentives 
to stop criminal suspects. We combine the D-D 
identification with a doubly robust estimator 
to assure that similarly situated stops are com-
pared in areas before and after impact zones 
were formed. If the police are not discrimi-
nating based on race of crime suspects, then 
changes in stop outcomes in areas affected by 

1  This expansion was during impact-zone period 9. We 
exclude stops that were located in areas that were previously 
part of impact-zone period 8.
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the  impact-zone program should be proportional 
across racial groups relative to unaffected areas.

I. Empirical Analysis

A. Data

We obtained detailed information from 
the SQF database in NYC for 2007. These 
records include the date (month, day, year), 
time (hours), location (latitude, longitude), the 
crime suspected and suspicious-behavior offi-
cers noted, demographics of the individuals 
stopped, and the outcomes from each stop.2 
Outcomes include whether the stop resulted in 
an arrest, summons issued, frisk, search, placing 
hands on suspects, and making suspects stand 
against walls. We also examine whether any 
illegal contraband or weapons were recovered 
from individuals that were frisked or searched. 
All outcomes are binary indicators of whether 
(= 1) or not (= 0) it occurred as a consequence 
of a stop.

B. Estimator of Racial Bias

We rely on a potential outcomes framework 
and estimate the average treatment effect on 
treated impact-zone areas (ATT). The differ-
ences in outcomes from police stops can be 
expressed as a counterfactual comparison of 
individuals (i) who are stopped after the expan-
sion of impact zones (denoted by t = 1) to 
individuals of the same race or ethnicity that 
are stopped in the same areas before an impact 
zone was formed (denoted by t = 0). We can 
identify the effect of impact-zone formation on 

2 To measure the crime suspected, we include indicators 
(1 = yes, 0 = no) of whether a stop was for a suspected 
violent, weapons, property, drug, or other offense reason. 
To measure criminal suspicions, we included indicators 
(1 = yes, 0 = no) noted on the SQF forms of whether a 
stopped individual was suspected of carrying an illegal 
object in plain view, fit a crime description, casing a place 
or victim, serving as a lookout for a crime, engaging in a 
drug transaction, exhibiting a furtive movement, observed 
committing a violent crime, had a suspicious bulge, or any 
other non-specified criminal suspicion. To measure the gen-
eral context of stops, we also created indicators for whether 
(= 1) or not (= 0) the stop was the result of a radio call, the 
day of the week the stop occurred, the patrol shift (first, sec-
ond, or third patrol), and a general age category of individ-
uals stopped (e.g., under 16, 16–19, 20–24, 25–34, 35–64, 
and 65 or older).

racial bias in stop outcomes for individuals if 
we assume changes in stop outcomes in impact 
zones (D = 1) should be proportional to areas 
where impact zones were not formed (D = 0). 
This estimate then takes the form of a D-D esti-
mator as in

  τ D    = E[  Y it   (1, 1) | D = 1] − E[  Y it   (1, 0) | D = 1]

 − E[  Y it   (0, 1) | D = 0] − E[  Y it   (0, 0) | D = 0].

To assure that estimates of each racial group’s 
(τ) changes in stop outcomes after an impact 
zone forms are not biased due to changes in the 
observed characteristics of stops, we use entropy 
distance weighting to reweight the distribution 
of stop features from the pre-impact period to 
equivalent on the mean, variance, and skew in 
stops made in the post-impact-zone period. 
We combine this entropy-weighting proce-
dure with a regression model that includes the 
full set of covariates so that estimates (τ) are 
doubly robust (Zhao and Percival 2016). This 
model yields estimates of the effect of being an 
impact zone relative to other areas of the city  
for blacks, Hispanics, and other racial groups.3 
We then compare the estimates of τ for each racial 
group, resulting in a difference-in-difference-in- 
difference (D-D-D) estimator.

II. Results

Table 1 shows the race-specific effects of 
the formation of impact zones in areas relative 
to unaffected areas of the city on all outcomes. 
For blacks, impact-zone formation increases 
arrests, summons, and frisks. For Hispanics, 
impact-zone formation increases arrests, frisks, 
and street detention (hands placed on walls). 
For other races, impact-zone formation does not 
significantly change ( p < 0.01) the risk of any 
outcome.

Recovery rates in impact zones for weapons 
increases for blacks, but this difference is not 
significantly greater than areas that don’t receive 
impact zones. Recovery rates for other contra-
band are unaffected by impact-zone formation.

3 The breakdown of other racial groups is majority white 
(61 percent), Asians (17 percent), other (21 percent), or 
unknown (0.5 percent) to police officers. 
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III. Discussion

The results suggest that intensifying SQF pol-
icy in specific areas of New York City leads to 
racially disparate frisks of blacks and Hispanics. 
The absence of effects on recovery rates for 
weapons and other contraband suggests that 

the police did not apply different standards in 
searches in impact zones compared to other 
areas. Even though there was no racial disparity 
in the change in recovery rates, the increase in 
stops of nonwhites implies that the burden of this 
policy shift occurred primarily for blacks and 
Hispanics in impact-zone areas. Unproductive 

Table 1—Outcomes from Similarly Situated Stops in Impact-Zone Areas and Other Areas

Arrested Summons Frisked Searched Hands Wall/Car Contraband Weapon

Blacks
Impact areas 1.815 1.235 1.453 1.245 1.224 0.839 1.464 2.202

(0.198) (0.084) (0.088) (0.111) (0.090) (0.127) (0.258) (0.530)
Mean before 0.022 0.086 0.544 0.059 0.174 0.019 0.013 0.005
Mean after 0.039 0.104 0.607 0.072 0.202 0.016 0.020 0.010

Observations 26,329 26,329 26,329 26,329 26,329 26,329 14,180 14,296

Other areas 1.154 1.013 1.090 1.050 1.056 1.023 1.010 1.654
(0.034) (0.032) (0.024) (0.031) (0.031) (0.051) (0.0498) (0.137)

Mean before 0.061 0.069 0.553 0.091 0.216 0.037 0.035 0.008
Mean after 0.069 0.070 0.568 0.095 0.225 0.037 0.036 0.013

Observations 174,876 174,876 174,876 174,876 174,876 174,876 95,285 96,234

τ 3.29 2.44 3.97 1.65 1.76 −1.35 1.72 1.00

Hispanics
Impact areas 1.970 1.124 1.787 1.321 1.691 1.212 1.214 1.900

(0.341) (0.120) (0.165) (0.176) (0.177) (0.262) (0.349) (0.744)
Mean before 0.025 0.087 0.520 0.073 0.164 0.025 0.019 0.006
Mean after 0.049 0.096 0.621 0.093 0.240 0.049 0.023 0.012

Observations 7,425 7,451 7,451 7,425 7,425 7,451 4,020 4,050

Other areas 1.076 0.994 1.082 1.060 1.106 1.001 0.991 1.896
(0.037) (0.037) (0.025) (0.035) (0.034) (0.053) (0.0587) (0.207)

Mean before 0.065 0.074 0.559 0.096 0.209 0.044 0.034 0.007
Mean after 0.069 0.074 0.579 0.102 0.226 0.044 0.033 0.013

Observations 111,633 111,633 111,633 111,633 111,633 111,633 61,519 62,116

τ 2.61 1.03 4.22 1.45 3.24 0.79 0.63 0.01

Other races
Impact areas 2.516 1.131 1.403 1.389 1.382 1.075 2.501 1.353

(0.755) (0.171) (0.155) (0.253) (0.186) (0.316) (1.143) (1.123)
Mean before 0.019 0.074 0.520 0.064 0.166 0.018 0.009 0.003
Mean after 0.044 0.085 0.567 0.087 0.212 0.019 0.022 0.004

Observations 3,214 3,116 3,229 3,214 3,229 3,214 1,639 1,656

Other areas 0.946 0.899 1.069 0.969 1.158 0.978 0.948 1.557
(0.039) (0.044) (0.034) (0.041) (0.047) (0.060) (0.064) (0.185)

Mean before 0.062 0.072 0.417 0.081 0.155 0.030 0.045 0.009
Mean after 0.059 0.065 0.430 0.080 0.173 0.029 0.043 0.014

Observations 77,282 77,282 77,284 77,282 77,282 77,282 32,018 32,316

τ 2.07 2.33 2.10 1.63 1.16 0.30 1.35 −0.16

Notes: This table reports exponentiated coefficients. Standard errors are in parentheses and clustered on officer ID. Additionally, 
τ = difference-in-difference estimates for each racial group. All estimates also control for radio call, day of week, patrol shift, 
crime suspected, criminal-suspicion factors, and suspect age. The conditional mean for each outcome is displayed in the period 
before and after impact-zone expansion. The effective sample size is different from reported observations due to weighting.
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frisks and searches from stops could be the basis 
for the claim of a disparate impact (Manski and 
Nagin 2017; Gelman, Fagan, and Kiss 2007).

This study is limited in several ways. First, 
the analysis relies on a policy experiment as our 
identification strategy to solve the problem of 
omitted variable bias and infra-marginality in 
using outcomes tests to estimate racial bias in 
police stops. If the NYPD were uniformly biased 
in their SQF activities across all areas, then 
impact zones do not provide useful  variation 
to estimate biased policing. Second, the study 
design assumes that the decision to designate 
areas as impact zones was caused by the policy 
and there were no other important factors that 
changed incentives for police officers to change 
SQF activities in these areas at the same time.

Future research should explore the produc-
tivity of searches from policy experiments by 
estimating whether changes in police policies 
produces racial disparities in search thresholds 
and recovery rates from police stops.
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