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Discrete Rent-Seeking Games with an
Application to Evidence Production

Giuseppe Dari-Mattiacci*
Lewis A. Kornhauser†

Evidence production at trial, the accumulation of patents in a
technological race, and lobbying are contests that often involve
strategic choices over a discrete set of options. The literature
has primarily focused on games with continuous effort choices.
We fill this gap by studying a rent-seeking game with discrete
effort choices and, for a significant class of games, derive a
transformation rule that allows one to find the equilibrium of
the discrete game from the equilibrium of the continuous
game, which is much simpler to identify. We also discuss the
limits of this approach and how well the continuous game
approximates the discrete one.

1 . I NTRODUCT ION

Parties engaged in a legal dispute compete with each other in the pro-
duction of evidence, which in turn determines the way in which the
court will adjudicate the case. Evidence production can be studied
through the lens of rent-seeking games: the parties’ expended efforts
are otherwise unproductive investments whose only purpose is to af-
fect theway inwhich the “pie”will be divided by the court. Although
the amount and quality of the evidence produced by the parties can
have beneficial effects for society in terms of better-quality decisions,
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the evolution of new precedents, and the production of ex ante incen-
tives to avoid harmful behavior—and hence evidence production is
not at all a worthless activity—the rent-seeking perspective captures
fairly accurately the particular incentives ofmost parties ex post, that
is, at the moment they become involved in a dispute.

There is a vast literature on rent-seeking games—originating from
the seminal papers by Tullock (1967, 1980) and Krueger (1974)—and
this literature has examined virtually all possible variations of the orig-
inal setting.1 However, the universal approach has been to consider the
effort expended by the contestants as a continuous variable.2 Indeed,
monetary expenditures can bemade in increments that are small enough
to be approximated by a continuous variable. Nevertheless, in many
real-life situations, the parties can only choose among a discrete (al-
beit possibly infinite) set of effort levels. Evidence production, for in-
stance, involves discrete decisions, such as the number of witnesses
to appear in court or howmany experts to hire.Manyother rent-seeking
contexts also involve discrete decisions. Think of a race to accumulate
patents related to a particular technology or the decision to hire an
additional lobbyist. In this article,wefill this gapby considering the clas-
sic rent-seeking game in which two (possibly asymmetric) risk-neutral
parties seek an indivisible prize; the investment of each party deter-
mines the probability that each will win. (Given risk-neutrality, this
setup also captures cases in which the prize is split between the par-
ties.) Differently from the standard setup, the parties make a discrete
number of investments into the game.

We analyze a class of symmetric and asymmetric rent-seeking games
with discrete strategy spaces and address several questions. Ourmain
result is presented in proposition 1. We identify a sufficient condition
underwhich the equilibriumof the discrete game lies in the closest pos-
sible neighborhood around the equilibrium of the continuous game.
This condition essentially points to the asymmetry between the par-
ties’ costs of efforts as the relevant factor. If the parties’ costs of effort
are relatively similar, the equilibrium of the discrete game lies neatly
in the closest possible neighborhood around the equilibriumof the con-
tinuous game. However, as the parties’ costs start to diverge, so do
the parties’ abilities to optimize their behavior. The party with the
largest cost of effort can effectively choose among a more restricted set

1 For recent reviews, see Congleton, Hillman, and Konrad (2008a, 2008b); Congleton
andHillman (2015). A review of the literature on asymmetric rent-seeking games, which
will form the basis for our model, can be found in Dari-Mattiacci and Parisi (2015).

2 A solitary exception to this trend is Baye, Kovenock, and Vries (1994), which, how-
ever, only analyzes symmetric games and focuses on the problem of increasing returns to
effort. We examine possibly asymmetric parties with constant returns to effort.
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of options as comparedwith the other partywith lower cost of effort—
a fact that we will illustratemomentarily bymeans of an example. The
asymmetry in the parties’ costs of effort hence translates into an asym-
metry in their ability to optimize and results in an advantage for the
lower-cost party. It is that party’s ability to exploit this advantage that
breaks the correspondence between the equilibrium of the continuous
game and that of the discrete game. Under the condition identified in
proposition 1, we provide four additional sets of results.

We show that, although the continuous game always has a unique
pure strategy equilibrium, the discrete game may have a unique pure
strategy equilibrium or a mixed strategy equilibrium (which we char-
acterize). Next, we compare the equilibriumof the discrete gamewith
the equilibrium of the continuous game and offer a simple transforma-
tion rule that allows the analyst to solve the discrete game byfirst solv-
ing the (much simpler) continuous game and then applying our trans-
formation rule to the result. Moreover, we show that the continuous
approximation of a discrete game is more accurate if (i) the contested
prize grows toward infinity, (ii) the parties’ marginal costs of effort are
closer to each other, or (iii) the set of admissible discrete values for the
parties’ efforts becomes denser—that is, the interval between two con-
tiguous admissible values decreases.

Finally, we demonstrate that if the condition identified in proposi-
tion 1 is not satisfied, the correspondence between the continuous and
the discrete gamemay break down. This shows that, although the con-
dition in proposition 1 is only sufficient, and hence we may err on the
side of caution when using the equilibrium of a continuous game to
approximate the equilibrium of the corresponding discrete game, cau-
tion is warranted because the procedure we propose applies only to a
subset of games.

Next,we bring our theory to bear on a concrete contest inwhich par-
ties make discrete investments into the game: evidence production in
court. Typically, evidence is a collection of discrete elements: docu-
ments, experts, eyewitnesses, and so forth. In the model, parties hire
an attorney at an hourly fee; the attorney then looks for evidence. We
show that, although the attorney is paid in an (almost) continuous
currency, the parties’ strategy spaces remain discrete and the equilib-
rium can be found by using our transformation rule.

This article is organized as follows. In section 2, we present the basic
model, discuss the benchmark case of the continuous game, and intro-
duce the discrete game. In section 3, we study the discrete game and de-
liver our main results. In section 4, we discuss the accuracy of the con-
tinuous approximation of the discrete game. In section 5, we illustrate
our findings in the context of a symmetric game. In section 6, we apply
our theory to evidence production. Finally, in section 7, we conclude.
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2 . B A S I C MODE L

2.1. Setup

In the model, we use a standard framework à la Tullock. Two parties,
A and B, exert effort a ≥ 0 and b ≥ 0, respectively, in a contest to win a
prize with value v > 0. The prize is shared proportionally to the par-
ties’ efforts (and is shared equally if both parties invest 0). The parties
are identical but for their marginal costs of effort, which are respec-
tively cA > 0 and cB > 0.

Parties are risk-neutral and hence the success function can be in-
terpreted indifferently as an actual share of the prize or as a probabil-
ity of winning the entire prize. The parties’ maximization problems
are as follows:

maxa

�
a

a + b
v − cAa

�
ðAÞ

maxb
b

a + b
v − cBb

� �
ðBÞ

, (1)

where we impose a=(a + b) = b=(a + b) = 1=2 if a = b = 0. In the next
subsection, we review the standard case in which effort is a contin-
uous variable, which we use as a benchmark. Next, we examine a
discrete version of the same game.

2.2. Benchmark: The Continuous Game

Asa benchmark,we consider the standard rent-seeking gamewith con-
tinuous effort spaces. Parties A and B play the game by choosing effort
from the nonnegative real line: a ∈ ½0,∞) and b ∈ ½0,∞). The problems
in equation (1) have first-order conditions vb=(a + b)2 = cA and va=
(a + b)2 = cB for party A and B, respectively. (The second-order condi-
tions are satisfied.)As iswell known, this gamehas auniqueNash equi-
librium where the parties make the following investments into the
game:

a* =
cB

cA + cBð Þ2 v ðAÞ

b* =
cA

cA + cBð Þ2 v ðBÞ
: (2)

From the first-order conditions, we can derive the parties’ reaction
functions:
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a** bð Þ =
ffiffiffiffiffiffiffiffiffi
b

v
cA

r
− b ðAÞ

b** að Þ =
ffiffiffiffiffiffiffiffi
a
v
cB

r
− a ðBÞ

, (3)

which will be useful later.

2.3. The Discrete Game

Now let us consider an alternative model in which the parties’ effort
space is discrete: a ∈ f0, e, 2e, 3e:::g and b ∈ f0, e, 2e, 3e :::g, where
e > 0 is the distance between any two admissible levels of effort. We
can think of e as a measure of the coarseness of the parties’ choice sets.
When e is large, the choice sets are coarse and the parties have rela-
tively few options to choose among. In contrast, as e decreases, the
parties’ choice sets become denser, giving parties more opportunities
to optimize their behavior. Note that as e→ 0, the discrete game ap-
proaches the continuous game. (When e = 1, the parties’ available ef-
forts choices are nonnegative integers.)

With a slight abuse of terminology, we use the term “floor of x” or
the symbol x to refer to the element in the effort set {0, e, 2e, 3e ...} that
is closest to the real number x from below; analogously, we use the
term “ceiling of x” or the symbol �x to refer to the closest value above
x in the set {0, e, 2e, 3e ...}. (When e = 1, the floor of x is the integer di-
rectly below x and the ceiling of x is the integer directly above x, as in
the usual interpretation.) To visualize: in the continuous game, the
parties’ choices of effort can be represented by any point on the posi-
tive real plane with coordinates (a, b). In contrast, in the discrete
game, the parties’ choices of efforts are restricted to the intersection
points of a grid with square cells of width and height equal to e, which
lies in the same plane.

Note that, although the parties’ effort sets are (countably) infinite,
it is undesirable for a party to spend more than the prize at stake, so
that the maximum effort a party can profitably make is yie = ( v=ci),
for i ∈ fA, Bg; that is, the greatest value in the set {0, e, 2e, 3e ...} that is
less than v=ci. In turn, this observation makes the parties’ effort sets
effectively finite, or equal to {0, e, 2e, 3e, ..., yie}. Application of Nash’s
(1951) theorem guarantees that the discrete game must have at least
one Nash equilibrium in pure or mixed strategies.

To find the equilibrium of the discrete game in a simple way, we
propose the following two-step procedure:
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1. Find the equilibrium of the continuous game, (a*, b*);
2. Solve the restricted discrete game in which party A can only

play a ∈ fa*, a*g and party B can only play b ∈ fb*, b*g.
In section 3, we will first show under what (sufficient, but not neces-
sary) conditions the equilibrium of the restricted game is a (possibly
unique) equilibrium of the full game. Next, we investigate whether
the equilibrium of the continuous game is a good approximation of
the equilibrium of the discrete game. Most of the proofs will leverage
on the fact that a party’s payoff function in equation (1) is strictly con-
cave in that party’s effort and hence parties prefer effort levels that are
closer to their reaction functions.

2.4. An Illustration

Consider figure 1. The equilibrium of the continuous game lies at the
intersection of the parties’ reaction functions, the dashed lines in the

Figure 1. Candidate equilibria of a discrete game with v = 10, cA = 2, cB = 1:8,
and ε = 1
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figure. In the discrete game, the parties may be unable to play these
equilibrium strategies as theywill typically be outside the parties’ dis-
crete choice sets. Our proposed procedure implies restricting atten-
tion to the four candidate equilibrium—the four points (the vertices
of the square) around the continuous equilibrium.

To illustrate, consider a simple game in which the prize at stake is
v = 10, the parties’marginal costs of effort are cA = 2 and cB = 1:8 and
e = 1, so that in the discrete game parties can only choose integer
levels of effort. The equilibrium of the continuous game is a* =
(1:8=(2 + 1:8)2)10 = 1:24 and b* = (2=(2 + 1:8)2)10 = 1:38. The proce-
dure introduced earlier allows us to restrict attention to a subset
of the parties’ choices, namely, to the integers above and below
the continuous equilibrium: a ∈ f1, 2g and b ∈ f1, 2g, as indicated
by the four points around (a*, b*) in figure 1. Table 1 reports the cor-
responding parties’ payoffs, (A, B), in the discrete game; the payoffs
of the restricted game are in bold. It is easy to see that the equilib-
rium of the restricted game is (a* = 1, b* = 1)—and that this is also
the equilibrium of the full game. (In table 1, we only report a subset
of the game’s payoffs, but note that the payoffs become negative
as we move further away from the continuous equilibrium; the full
table is in the appendix.)

3 . ANA LY S I S

In this section,we investigate the conditionsunderwhich theprocedure
highlighted earlier is valid. To preview our results: proposition 1 shows
that if the parties’marginal costs of effort are not “too” asymmetric, the
equilibrium of the discrete game is contained in the square cell around
the equilibrium of the continuous game and hence the procedure

Table 1. Parties’ Payoffs (A, B) in a Discrete Game with v = 10, cA = 2,
cB = 1.8 and e = 1

... ... ... ... ... ... ...

b = 4 (0, 2.8) (0, .8) (−.66, −.53) (−1.71, −1.48) (−3, −2.2) ...

b = 3 (0, 4.6) (.5, 2.1) (0, .6) (−1, −.4) (−2.28, 1.11) ...

b = 2 (0, 6.4) (1.33, 3.06) (1, 1.4) (0, .4) (−1.33, −.26) ...

b = 1 (0, 8.2) (3, 3.2) (2.66, 1.53) (1.5, .7) (0, .2) ...

b = 0 (5, 5) (8, 0) (6, 0) (4, 0) (2, 0) ...

a = 0 a = 1 a = 2 a = 3 a = 4 ...

Note: Payoffs of the restricted game are in bold.
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introduced earlier can be applied. If this sufficient condition is not
met, our procedure may fail to identify the correct equilibrium. Prop-
osition 2 provides the conditions for this equilibrium to be in pure
strategies or in mixed strategies and, in the former case, identifies
which of the four vertices of the cell is an equilibrium. Proposition 3
shows that the pure strategy equilibrium (when it exists) is unique
and proposition 4 characterizes the mixing probabilities of the mixed
strategy equilibria. Proposition 5 and 6 examine when the continuous
game is a good approximation of the discrete game and, finally, propo-
sition 7 provides a counterexample, showing that outside the domain
of the sufficient conditions given in proposition 1, the solution to
the restricted gamemay not identify the equilibrium of the full game.

To start, let

ĉA ;
a* − b*

2b*

ĉB ;
b* − a*

2a*

(4)

be threshold levels for the parties’ marginal costs of effort, cA and cB.
Note that, as a* and b* depend on the costs, these thresholds are
only implicitly defined in terms of the equilibrium of the continuous
game and they are both equal to zero if the parties’ costs of effort are
symmetric. In addition, let

E ; a*, b*
� �

, a*, b*
� �

, a*, b*
� �

, a*, b*
� �n o

be the equilibrium set. This set contains thefloor and the ceiling of the
equilibrium of the continuous game—that is, the four points around
the continuous equilibrium, as depicted in figure 1, and describes the
parties’ choice sets in the restricted game.

In the next proposition, we will show that, if the parties’ marginal
costs of effort lie above the thresholds in equation (4)—that is, when
cA ≥ ĉA and cB ≥ ĉB, then solving the restricted game provides a solu-
tion for the full game and the equilibrium of the full game is in E.

Most of our results depend on the asymmetry between the parties’
marginal costs of effort; figure 2 visualizes the region in which these
conditions are satisfied in the (cA, cB) plane for e = 1. Note that the
conditions are always satisfied if the parties are symmetric cA = cB

and that they are more easily satisfied if the prize at stake is large.
Note also that if cA > cB, then we have a* < b* and the condition
cA ≥ ĉA is always satisfied and hence only the threshold ĉB is binding.
Vice versa if cA < cB. Hence, looking at figure 2, the condition cA > ĉA
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is active above the diagonal, whereas the condition cB > ĉB is active
below the diagonal.

Proposition 1. If cA ≥ ĉA and cB ≥ ĉB, the discrete game has a
Nash equilibrium that lies in the equilibrium set E.

Proof of Proposition 1. See appendix. QED

Proposition 1 shows that if the parties are not too asymmetric con-
cerning their marginal costs of effort, the discrete game has an easy-
to-find solution that lies in the smallest (discrete) neighborhood
around the equilibrium of the continuous game. Then we can apply
an easy transformation rule, which we provide in the next proposi-
tion. The intuition for the result in proposition 1 is straightforward.
The number of choices available to a party in the discrete game de-
pends on that party’s cost of effort. A large cost of effort implies that
a party has few effort levels to choose from. Think of a game with
v = 10, e = 1, and cA = 5: party A can effectively choose to exert effort
a = 0 (thereby spending 0), effort a = 1 (which costs 5), or effort a = 2
(which costs as much as the prize, 10). Imagine that party B’s cost of
effort is cB = 1. Repeating the same reasoning, it is easy to see that
the effective choices available to party B are b ∈ f0, 1, ::::10g, so that
party B can more easily fine-tune his or her effort level around what
would be theoretically optimal if party B could choose among a contin-
uumof options. In contrast, partyA’s choices are coarser. This asymme-
try in theparties’ ability tooptimize their behavior causesour procedure

Figure 2. Values of cA and cB such that cA ≥≥ ĉA and cB ≥≥ ĉB

(for e = 1).
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to break down because the partywith thefiner decision set can exploit
the other party’s coarseness to his or her advantage, as will be further
explained when commenting on proposition 7. Note also that changes
in v and in e affect the scale of the problem, but do not change the rela-
tive size of the parties’ costs, which generates the relevant asymmetry.

Under the conditions of proposition 1, we can solve the full game
simply by solving the restricted game. In the following proposition,
we study the characteristics of the equilibrium of the restricted game:
namely, whether the game has a pure or a mixed strategy equilibrium
and, if the equilibrium is in pure strategies, which of the four points in
E is the equilibrium point. Let

cA ;
b*

a* + e + b*
� �

a* + b*
� � v

cB ;
a*

a* + e + b*
� �

a* + b*
� � v

cA ;
b* + e

a* + b* + 2e
� �

a* + b* + e
� � v

cB ;
a* + e

a* + b* + 2e
� �

a* + b* + e
� � v

,

and note that if cA = cB, the four thresholds above collapse to two iden-
tical thresholds that we denote as c ; v=2(2a* + e) = v=2(2b* + e).

Proposition 2. If cA ≥ ĉA and cB ≥ ĉB, then the equilibrium of the
discrete game is a pure strategy Nash or a mixed strategy Nash
equilibrium as indicated in tables 2–4.

Proof of Proposition 2. See appendix. QED

The next figures visualize the results of proposition 2. Figure 3 de-
scribes the characteristics of the equilibrium as a function of the par-
ties’marginal costs of effortwithin the conditions set in proposition 1.

Table 2. Equilibria If cA < cB

cB > cB (a*, b*) (a*, b*) (a*, b*)

cB ≤ cB ≤ cB (a*, b*) Mixed (a*, b*)

cB < cB (a*, b*) (a*, b*) (a*, b*)

cA ≤ cA cA < cA < cA cA ≥ cA
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Next, we show how the position of the continuous gamewithin the
cell with vertices in E affects the characteristics of the corresponding
equilibrium of the discrete game. Figure 4 depicts the characteristics
of the discrete equilibrium in the plane with coordinates (a*, b*) for
v = 100 and e = 1. The graph shows how the position of the continuous
equilibrium (a*, b*) within the square cell surrounding it affects the
type of equilibrium of the discrete game.

For instance, take the square cell that is closer to the origin in fig-
ure 4—the graph starts at (1, 1) because the conditions in proposition 1
bound the solution away from zero—and notice that if the continuous

Table 3. Equilibria If cA = cB

(a*, b*) (a*, b*)

c ≤ c c > c

Table 4. Equilibria If cA > cB

cB ≥ cB (a*, b*) (a*, b*) (a*, b*)

cB < cB < cB (a*, b*) Mixed (a*, b*)

cB ≤ cB (a*, b*) (a*, b*) (a*, b*)

cA < cA cA ≤ cA ≤ cA cA > cA

Figure 3. Equilibrium of the discrete game for different costs of effort (v = 100 and
e = 1).
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equilibrium is close to (1, 1), then the discrete game has a symmetric
equilibrium at (1, 1). Conversely, if the continuous equilibrium is close
to (2, 2), then the equilibrium of discrete game will be (2, 2). Similarly,
asymmetric equilibria of the discrete game will emerge when the con-
tinuous equilibrium approaches (1, 2) or (2, 1). In this case, there is no
room for mixed strategy equilibria. The next cell to the right, however,
allows for such a possibility when the continuous equilibrium (a*, b*)
is somewhat in the middle of the cell.

The following proposition shows that the pure strategy equilibria
identified thanks to propositions 1 and 2 are unique.

Proposition 3. If cA ≥ ĉA and cB ≥ ĉB, and if the discrete game has
a pure strategy Nash equilibrium, the equilibrium is unique.

Proof of Proposition 3. See appendix. QED

Next, we examine the features of the mixed strategy equilibria
and, in particular, we characterize the mixing probabilities.

Proposition 4. If cA ≥ ĉA and cB ≥ ĉB, and if the discrete game
has a mixed strategy Nash equilibrium, then the equilibrium
mixing probabilities are

pA
* =

cB − cB

cB − cB
Að Þ

pB
* =

cA − cA

cA − cA
Bð Þ

Figure 4. Equilibrium of the discrete game as a function of the equilibrium of the
continuous game (v = 100 and e = 1).
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so that party A chooses a* with probability pA* and chooses a*
with the complementary probability 1 − pA*. Similarly, party B
chooses b* with probability pB* and chooses b* with the com-
plementary probability 1 − pB*.

Proof of Proposition 4. See appendix. QED

4 . CONT INUOU S A P PROX IMAT ION
OF D I S CR ET E R ENT - S E E K ING GAME S

The results in proposition 1 show under what conditions the discrete
rent-seeking game can be easily solved by restricting attention to a
neighborhoodE of the equilibriumof the continuous game.Herewe ad-
dress the related question of, within these conditions, how good the con-
tinuous approximation of a discrete equilibrium is. The following two
propositions show that the size of the contested prize, the asymmetry
in the parties’ costs of effort, and the coarseness of the parties’ discrete
effort sets affect the approximation in intuitive ways. Finally, propo-
sition 7 shows that if the conditions of proposition 1 are violated, our
proposed procedure may fail.

Proposition 5. The conditions cA ≥ ĉA and cB ≥ ĉB are more eas-
ily satisfied if:

• The party’s decision sets are dense (e is small).
• The prize at stake is large (v is large).
• The parties’ marginal costs of effort are symmetric (cA and cB
are close to each other).

Proof of Proposition 5. See appendix. QED

Proposition 6. If cA ≥ ĉA and cB ≥ ĉB, mixed strategy equilibria
are less likely if the parties’ marginal costs of effort are sym-
metric (cA and cB are close to each other).

Proof of Proposition 6. See appendix. QED

Proposition 7. If cA < ĉA or cB < ĉB, the procedure detailed in
proposition 2 may fail to identify the correct equilibrium.

Proof of Proposition 7. See appendix. QED
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The proof of proposition 7 proceeds by example (v = 10, cA = 3:5,
cB = 0:5, and e = 1.). It is easy to verify that cB < ĉB and hence propo-
sition 1 does not apply. (Moreover, because cA=cB > 3,we are in region I
infig. A2.) As shown in the appendix, in this case the procedure set out
in proposition 2 would select (0, 2) as an equilibrium. However, as
shown infigure 5, party B has an incentive to deviate and, namely, pre-
fers (0, 1), which is outside the equilibrium set, over (0, 2), because the
former is closer to B’s reaction function.Hence, (0, 2) cannot be an equi-
librium of the full game.

5 . S YMMETR I C PART I E S

Consider now the case in which the parties are perfectly symmetric,
that is, cA = cB = c, the parties’ choice sets consist of the nonnega-
tive integers, and the prize at stake is equal to v = 1. The solution of
the corresponding continuous game is notoriously a* = b* = 1=4c.
By proposition 1, we can focus attention on the restricted game
with a ∈ f( 1=4c), (1=4c)g and b ∈ f( 1=4c), (1=4c)g, that is, the parties’
action set includes only the integer above and the one below the

Figure 5. Candidate equilibria of a discrete game with v = 10,
cA = 3:5, cB = 0:5, and e = 1.
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solution of the continuous game. Let (1=4c) ; y and (1=4c) = y + 1.
We have the following payoffs for party A and B, respectively:

b = y b = y + 1

a = y + 1
�

y+1
2y+1 − c(y + 1), y

2y+1 − cy
� �

1
2 − c(y + 1), 1

2 − c(y + 1)
�

a = y
�

1
2 − cy, 1

2 − cy
� �

y
2y+1 − cy, y+1

2y+1 − c(y + 1)
�

Note that, because the parties are symmetric, then (a = y, b = y) is
a Nash equilibrium if neither party finds it advantageous to deviate
unilaterally to y + 1, that is, iff (1=2) − cy > ((y + 1)=(2y + 1))−c(y + 1).
If this condition is satisfied, there cannot be an asymmetric equilib-
rium in which one party plays y and the other plays y + 1. The for-
mer condition is equivalent to:

y >
1
4c

−

1
2
: (5)

Similarly, (a = y +1,b = y +1) is aNashequilibrium if (1=2) − c(y + 1) >
(y=(2y + 1)) − cy, which again guarantees that there is no asymmetric
equilibrium. The former condition is equivalent to

y <
1
4c

−

1
2
: (6)

Because the two conditions (eqq. [5] and [6]) are mutually exclu-
sive, for y ≠ (1=4c) − (1=2) the game has a unique, symmetric pure
strategy Nash equilibrium. (If y = (1=4c) − (1=2), both symmetric
and asymmetric equilibria are weakly supported. The parties are in-
different between playing y and y + 1, and there is also a continuum of
mixed strategy equilibria supported by anymixing probability.) Condi-
tions (5) and (6) can be rewritten as (1=4c) < ((( 1=4c) + (1=4c))=2) and
(1=4c) > ((( 1=4c) + (1=4c))=2), respectively, where the right-hand side
of these inequalities is the midpoint between the integer below and
the integer above 1=4c. So rewritten, these conditions say that, if
the equilibrium of the continuous game is below the midpoint, that
is, if it is closer to the integer below, both parties will choose the inte-
ger below 1=4c in the equilibrium of the discrete game; otherwise,
they will choose the integer above. This leads to the following result:

Corollary 1. The discrete rent-seeking game with symmetric
marginal costs of effort c, v = 1, and e = 1 has a unique pure strat-
egyNash equilibrium iff c ≠ 1=(4n + 2) with n ∈ f0, 1, 2, :::g; oth-
erwise, the game has four pure strategy Nash equilibria and a
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continuumofmixed strategyNash equilibria. At the equilibrium,
the parties play the integer that is closest to their equilibrium
strategy in the continuous game.

The transformation rule from the continuous game to the discrete
game is hence very simple: in the discrete game, parties choose the
integer that is closest to the equilibrium of the continuous game.
Figure 6 illustrates this point. We see that the equilibrium is the in-
teger below if the stepped line is below the curved line and is the in-
teger above otherwise. As c increases, the parties move discontinu-
ously from the integer above to the integer below the equilibrium
of the continuous game in a stepwise way. Note that in the symmet-
ric case, mixed strategy equilibria occur only in the (degenerate) case
in which the parties are indifferent as to which strategy to play, that
is, when the equilibrium of the continuous game is exactly halfway
between two admissible discrete levels of effort.

6 . AN A P P L I CAT ION TO EV ID ENCE
PRODUCT ION

6.1. Setup

We can now apply the theory developed earlier to evidence production
at trial. Experts, documents, and witnesses are typically discrete. Yet
reaching out to experts, reviewing documents, andfinding and prepar-
ing witnesses are costly activities, and one could use the monetary
costs thereof as the choice variable. Although money can be thought
of as a continuous variable, changing the unit of measurement does
not make a discrete strategy space continuous. In the evidence pro-
duction game, money is an input into the discovery of evidence, not
the choice being made.

We consider two parties—a plaintiff P and a defendant D—who
are in a dispute about a contested amount of money equal to v to be

Figure 6. Equilibrium level of effort in the continuous and discrete games.
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shared according to x ∈ (0, 1). On one interpretation, the plaintiff has a
contract claim against the defendant with vx as the true amount of
damages suffered by the plaintiff. An omniscient court would award
vx to plaintiff; but, though the parties know x, the court does not.
Thus, the court must rely on evidence submitted by the parties.

A piece of evidence is a signal s ∈ f−1, 1g, where s = 1 occurs with
probability p(x) and is a signal in favor of the plaintiff, whereas s = −1
occurs with the complementary probability 1 − p(x) and is a signal in
favor of the defendant, with p(x) monotonically increasing in x. This
simple structure captures the idea that the plaintiff has a higher
probability of finding evidence in his or her favor if he or she has suf-
fered a larger loss, and vice versa for the defendant. In a perfectly
symmetric setup, we would have that 1 − p(1 − x) = p(x), which im-
plies p(1=2) = 1=2 and first-order symmetry px(x) = px(1 − x). A sim-
ple example of symmetric probabilities of finding evidence is given
by p(x) = x. We will analyze the general case and comment on the
symmetric case when needed.

Eachparty endogenously decides howmany signals to collect. Then,
at trial, the court issues a judgment t = (r1=(r1 + r

−1))v (with t = 1=2 if
r1 = r

−1 = 0),wherer1 ; o(sjs = 1) andr
−1 ; −o(sjs = −1).More plainly,

r1 isthenumberofsignalss = 1submittedtothecourtand,similarly,r
−1

is the number of signals s = −1. The court simply considers the
relative number of signals submitted by each party the “weight of
the evidence.”Note that, if evidence were generated randomly, twould
be equal to the number of successes over the number of trials from a
Bernoulli distributionwith probability p(x) and hencewould be an un-
biased estimator of x iff p(x) = x, which also satisfies first-order symme-
try as noted earlier. Evidence, however, is not a random process: parties
strategically decide how much to invest in evidence production and,
among the pieces of evidence they find, parties decide which to submit
to the court and which to withhold.3 Before delving into the evidence
production process, let us first summarize the timing of the game:4

• Time 0: A dispute arises; the parties jointly observe x and the
plaintiff files a lawsuit at no cost.

• Time 1: The parties endogenously and simultaneously decide
how many signals to collect (at a cost per signal).

• Time 2: Each party decides which of the collected signals to
submit to court, and the court adjudicates the case.

3 We thus assume that neither party has an obligation to reveal unfavorable evi-
dence. In criminal trials in the United States, prosecutors do have an obligation to re-
veal exculpatory evidence.

4 We abstract from settlement because it is not essential to our analysis.
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The court is a mechanical player that adjudicates the case simply
based on the evidence submitted according to the rule of decision t.
Accordingly, because t increases in r1 and decreases in r

−1, each party
has incentives to submit all favorable signals and to withhold all sig-
nals that are favorable to the other party. Hence, the game unfolds at
the evidence production stage.

6.2. Endogenous Investments in Litigation

Before trial, at time 2, the parties invest in attorney-hours with the
purpose of gathering evidence for trial. Each attorney draws an aver-
age of 1 signal per hour at a cost kP and kD, respectively. For simplicity,
we assume that the expected time needed to collect each extra signal
is constant. This allows us to describe evidence collection as a Poisson
process; as each party only submits favorable signals, the relevant
Poisson process has an arrival rate of favorable signals equal to p(x)
for the plaintiff and 1 − p(x) for the defendant.5 This is a possibly re-
strictive assumption, as it is more likely that collecting an additional
signal costs more time than the previous signals; yet it greatly simpli-
fies the analysis.

Evidence collection is a sequential process that stops when the
marginal value of spending an additional hour of effort equals its
marginal cost. However, recall that a Poisson process is memoryless
and, hence, if it makes sense to invest additional time to find a new
signal at time t, it also makes sense to keep investigating at time
t0 > t, indeed to keep investigating until that signal is found, because
the additional expected waiting time is constant as we go forward.
Crucially, the parties decide when to stop collecting signals indepen-
dently of each other. Therefore, the question reduces to how many
(favorable) signals the parties would collect in the Nash equilibrium
of a game with simultaneous moves where the costs of collection are
the expected costs from the sequential Poisson process.

To calculate these costs, let us start with the plaintiff. Given that
the arrival rate of favorable signals is p(x) signals per hour, the aver-
age time needed to collect one signal is 1=p(x) hours and hence the
expected time needed to collect rP favorable signals is rP=p(x) hours
at an expected cost of rPkP=p(x). Similarly, the defendant expects to
spend rDkD=(1 − p(x)) to collect rD favorable signals.

The investments in attorney-hours are chosen by the parties to
maximize their expected trial outcome net of the costs. The parties’

5 Note that, in a Poisson process with base arrival rate k, if only a fraction p(x) of
the draws are kept and the rest is discarded, the resulting arrival rate of favorable sig-
nals is p(x)k. In our model, we have l = 1 and hence the plaintiff’s arrival rate of favor-
able signals is p(x) whereas the defendant’s arrival rate is 1 − p(x).
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decision problems are

maxrP

rP

rP + rD

v −

rPkP

p xð Þ
� �

plaintiffð Þ

minrD

rP

rP + rD

v +
rDkD

1 − p xð Þ
� �

defendantð Þ
,

where the plaintiff maximizes the amount of money he or she will
collect from the defendant at trial net of his or her evidence collec-
tion costs; similarly, the defendant minimizes the amount of money
he or she will pay to the plaintiff plus his or her evidence collection
costs. Using rD=(rP + rD) = 1 − (rP=(rP + rD)), we can rewrite the par-
ties’ objectives more conveniently as

maxrP

rP

rP + rD

v −

rPkP

p xð Þ
� �

plaintiffð Þ

maxrD

rD

rP + rD

v −

rDkD

1 − p xð Þ − v
� �

defendantð Þ
:

Assuming for now that rP and rD are continuous variables, the
first-order conditions lead to the following result:

rP
* =

p xð Þ 1 − p xð Þð Þ
p xð ÞkD + 1 − p xð Þð ÞkPð Þ2 vp xð ÞkD

rD
* =

p xð Þ 1 − p xð Þð Þ
p xð ÞkD + 1 − p xð Þð ÞkPð Þ2 v 1 − p xð Þð ÞkP

: (7)

Note that, in the continuous strategy equilibrium, although the
parties collect different amounts of evidence—rP* ≠ rD* unless p(x) =
1 − p(x)—they spend the same amount of resources in attorney fees:

rP*kP

p xð Þ =
rD*kD

1 − p xð Þ =
p xð Þ 1 − p xð Þð Þ

p xð ÞkD + 1 − p xð Þð ÞkPð Þ2 kPkDv:

This is because the parties play a rent-seeking game with constant
marginal returns to effort. Therefore, the total cost of evidence pro-
duction at trial (the total rent dissipation) is

D = 2
p xð Þ 1 − p xð Þð Þ

p xð ÞkD + 1 − p xð Þð ÞkPð Þ2 kPkDv:

The analysis in section 3 can be applied to this case. We know
therefore that if kP=p(x) ≤ (rP* − rD*)=2rD* and kD=(1 − p(x)) ≤ (rP* − rP*)=
2rP*, at the equilibrium of the discrete game the plaintiff will choose
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either rP* or rP
* or a mix of the two and, likewise, the defendant will

choose either rD* or rD
* or a mix of the two.

7 . CONCLU S I ON S AND AP P L I CAT ION S

Wehave identified a class of discrete rent-seeking games for which the
equilibrium of the associated continuous rent-seeking game serves as
an approximationof the equilibriumof the discrete game.This analysis
is useful for two reasons. First, identifying the equilibria of the discrete
gamemaybe a difficult task as the payoffmatrixmay be very large. Iden-
tifying the equilibrium of the continuous game is relatively straightfor-
ward. Our analysis dramatically simplifies the analysis to a simple two-
step procedure. One first determines the equilibrium of the continuous
game. Then one examines the four discrete points in the mesh closest
to the continuous equilibrium. Moreover, we identify factors that
make the continuous equilibrium a better approximation of the equilib-
rium in the discrete game.

Second, discrete rent-seeking games are substantively important as
they are the natural way to model widespread social phenomena. As-
pects of litigation provide the most obvious example. The incentive
effects of legal rules are mediated by the litigation process as people
act ex ante in the shadow of the law, that is, in the shadow of the ex-
pected outcome at trial. That outcome, of course, depends on the be-
havior of the litigating parties in the gathering and presentation of ev-
idence. But evidence is not a continuous variable; it comes in discrete
bundles. Each litigant must decide which bundles to gather and to
submit to the court.Many other phenomena share this discrete struc-
ture. Companies, for instance, acquire patents to restrict entry into
the industry; again, patents are a discrete quantity.

Finally, we wish to emphasize two limitations of our analysis and
suggest possible extensions. First, we assumed that the parties’ dis-
crete effort sets are equally spaced, that is, that the parties can
choose among similar sets of possibilities. This assumption holds
in all of the applications that we suggested. In reality, however, there
could be cases in which a party can choose among a set of discrete
options that is finer than the set available to the other party. Think,
for instance, of a situation in which party A’s effort set consists of
the nonnegative integers whereas party B’s effort set consists of mul-
tiples of 1=2 and hence party B has more options to choose from.6

We conjecture that our results will qualitatively apply to this case,
although the exact conditions will necessarily change quantitatively.

6 That is, we have eA ≠ eB.
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The intuition is that a change in the relative coarseness of the par-
ties’ choice sets results in an asymmetry that has similar effects on
the parties’ abilities to optimize their behavior as the parties’ costs
of effort, as emphasized in the introduction. Second, we have provided
an analysis of simultaneous rent-seeking games, whereas in reality
parties often choose sequentially. Again, we conjecture that our main
results will qualitatively apply to a sequential game, although the spe-
cific quantitative aspects of our results will necessarily change.

AP P END IX

A1. Example

In table A1, we report the parties’ payoffs for all feasible levels of ef-
fort in relation to the example in table 1 and figure 1.

A2. Proof of Proposition 1

Proof. To prove the proposition, it is sufficient to show that unilat-
eral deviations outside the equilibrium set E reduce the payoff of the
deviating party. We will focus on party B’s decisions under the as-
sumption that party A has chosen either a* or a*. (Applying the
same logic to party A will then be trivial.) The proof is structured
as follows. We will first offer some useful preliminary observations
on party B’s reaction function, which will allow us to partition the
space into three different regions. We will then prove the results of
the proposition by analyzing each of these regions in turn.

A2.1. Preliminary Observations. Party B’s reaction function, b**(a),
as given in equation (3), is depicted in figure A1.

Note that the slope of b**(a) is:

1. db**
da = 1 at a = v

16cB
;

2. db**
da = 0 at a = v

4cB
;

3. db**
da > −1 at a = v

cB
.

Let us now consider the possible location of the equilibrium of the
continuous game (a*, b*) as defined in equation (2), which must nec-
essarily lie along B’s reaction function. For a given cB, the dashed
lines in figure A2 depict party A’s reaction function at different lev-
els of A’s marginal cost of effort, cA. The following observations will
be useful later.
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Figure A1. Party B’s reaction function.

Figure A2. Slope of b**(a) at different equilibria of the continuous
game.

Lemma 1. Using (2) and the slope of b**(a), we can identify three
regions of party B’s reaction function as depicted in figure A2:

Region I: If cA > 3cB, we have a* < v=16cB and the slope of b**(a)
is db**=da > 1; therefore, in region I, the line with slope 1 and
that passes through the equilibrium of the continuous game
(a*, b*) crosses b**(a) from above.

Region II: If cB ≤ cA ≤ 3cB, we have v=16cB ≤ a* ≤ v=4cB and the
slope of b**(a) is 0 ≤ (db**=da) ≤ 1; therefore, in region II, the
line with slope 1 and that passes through the equilibrium of
the continuous game (a*, b*) crosses b**(a) from below.

Region III: If cA < cB, we have v=4cB < a* ≤ v=cB and the slope of
b**(a) is −1 < (db**=da) < 0; in region III, the line with slope −1
that passes through the equilibrium of the continuous game
(a*, b*) crosses b**(a) from above.

Proof of Lemma 1. Omitted. QED
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In the discrete game, because each party can choose among a count-
able set of (equally spaced) points, the possible equilibria of the game
can be visualized as the nodes of a grid in the (a, b) space. The line with
slope 1 or −1 that passes through the equilibrium of the continuous
game will be important because it limits the number of points that
we will need to consider in the proof, as will be clear later.

A2.2. Region III. We can now start tackling the proof by beginning
from region III. Further, let us start by assuming that party A has
chosen a* and then repeat the exercise for a*.

A2.2.1 Region III: Party A Chooses a*. Party B’s possible effort
choices can be visualized as the points (a*, b) with b ∈ f0, e,2e, :::g,
which are located along the vertical line passing through a*; see fig-
ure A3. We will show that party B’s payoff at any point (a*, b) with
b > b* is less than at the point (a*, b*) and, similarly, that B’s payoff
at any point (a*, b) with b < b* is less than at the point (a*, b*). That
is: party B does not have an incentive to deviate unilaterally outside
the set E, given party A’s choice of a*. (Repeating the exercise for the
case of a = a* will conclude the proof for region III. We will then run
the same analysis in regions II and I.)

To start with, note that, although the point (a*, b*) is always
above B’s reaction function, the point (a*, b*) could be either below
or above B’s reaction function. This is due to the fact that B’s reaction
function—which passes through (a*, b*)—decreases in a and hence is
below the horizontal b*-line when a > a*. This in turn implies that
all the points (a*, b) above the horizontal b*-line also lie above B’s reac-
tion function—as is the case for the point (a*, b*)—whereas the points
(a*,b) below thehorizontalb*-linemay lie above or belowB’s reaction
function. Therefore, the point (a*, b*) could be either below or above
B’s reaction function. Let us consider these two cases in turn.

If (a*, b*) is belowB’s reaction function,we are in the case depicted
infigureA3,where the points (a*,b) withb < b* lie belowB’s reaction
function and the points (a*, b) with b > b* lie above B’s reaction func-
tion. Given that B’s payoff is concave in b and maximal along B’s re-
action function, it follows that B’s payoff decreases if B moves above
b* or below b*, which proves that B will not deviate outside the equi-
librium set E.

If instead (a*, b*) is above B’s reaction function, as depicted in fig-
ure A4, the reasoning above breaks down because now we need to
compare (a*, b*)—which, by hypothesis, is above B’s reaction func-
tion—with points (a*, b) with b < b* possibly below B’s reaction
function, and concavity does not help us solve this problem. The
point (a*, b*) still dominates all points (a*, b) above it, but we need
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to show that (a*, b*) dominates all points (a*, b) below it. To do so,
we will first establish an intermediate result.

Let

b̂− að Þ = a* + b* − a

be the line with slope −1 that passes through the equilibrium of the
continuous game (the dotted diagonal in figure A4), which we men-
tioned in Lemma 1 above; then:

Lemma 2. Given party A’s choice of effort, a, party B’s payoff is
weakly greater at b = b* than at b = b̂−(a).

Proof of Lemma 2. We need to show that (b*=(a + b*))v −

b*cB ≥ (b̂−(a)=(a + b̂−(a)))v − b̂−(a)cB. Replacing b̂−(a) and rearrang-
ing, we have that the latter inequality is satisfied iff

a* − a
� �

av − a* + b*
� �

a + b*
� �

cB

� �
≤ 0: (8)

The first factor is positive if a < a* and negative if a > a*. Using
equation (2), the second factor can be rewritten as

a cA + cBð Þ3v − a cA + cBð Þ2 + cAv
� �

cB

cA + cBð Þ3
= a cA + cBð Þ2 − cBv
� � cA

cA + cBð Þ3 v,

which is positive iff a > (cB=(cA + cB)
2)v = a* and negative if a < a*. It

follows that the two factors in equation (8) have the opposite sign
and hence that the inequality is strictly satisfied if a < a* or a > a*.
If a = a*, then equation (8) holds as an equality. QED

Lemma 2 shows that given A’s choice of a*, B’s payoff is higher
when B chooses the continuous-equilibrium level of effort b* rather
than the level of effort b̂−(a*) lying on the line with slope −1 that
passes through the continuous equilibrium. Note that, importantly,
the lemma compares all possible levels of effort within these sets, thus
not only those admitted in the discrete game. In turn, this is not a prob-
lem for our purposes because we will use these comparisons of effort
levelsmerely as intermediate steps of the proof.Wewill now combine
lemma 2 with the observations in lemma 1 to prove our result.

First, it is easy to verify graphically that, in the discrete game, the
first feasible effort level below b* must be at b ≤ b̂−(a*), that is, under
the line with slope −1. To see why, note the widest distance between
b* and b̂−(a*) is achieved when, given b*, b̂−(a*) is as low as possible,

308 Discrete Rent-Seeking Games and Evidence Production



that is, when the point (a*, b*) overlaps with the point (a*, b*). Yet in
this case the first point below b* must lie exactly on the line with
slope −1, which proves that the observation above is correct.

From lemma 1 we know that the line b̂−(a) crosses B’s reaction
function from above. Looking at figure A4, notice that, if A plays a*,
B’s payoff is greater at b̂−(a*) than at any point below it because of the
concavity of B’s reaction function. By lemma 2, B’s payoff is greater
at b* than at b̂−(a*). Further, B’s payoff is greater at b* than it is at b*
again due to concavity, because both points are above B’s reaction func-
tion but b* is closer to it. By transitivity, B’s payoff is greater at b* than
at any point below even when b* is above B’s reaction function. (Note
again that it is immaterial whether b* and b̂−(a*) are in party B’s dis-
crete choice set because they are never actually chosen.)

A2.2.2 Region III: Party A Chooses a*. We can now prove that if
A plays a*, then B’s payoff is greater at b* than at any point above
it. Similarly to what we noted earlier, the point (a*, b*) is always be-
low B’s reaction function, but the point (a*, b*) could be above or
below it. Yet because lemma 2 applies equally to the left and to
the right of a*, the proof is a trivial replication of the reasoning
above. Combining the previous results, we can conclude that in re-
gion III party B does not have an incentive to deviate outside the
equilibrium set E.

A2.3. Region II. Let us now turn to region II. Let b̂+(a) = a + b* − a*
be the line with slope 1 that passes through the equilibrium of the
continuous game as shown in figure A5, then:

Lemma 3. In region II, given party A’s choice of effort, a, party
B’s payoff is weakly greater at b = b* than at b = b̂+(a) iff cB ≥
(b* − a*)=2a*.

Proof of Lemma 3. We need to show that, under the condi-
tions set out in the lemma, (b*=(a + b*))v − b*cB ≥ (b̂+(a)=
(a + b̂+(a)))v − b̂+(a)cB. Replacing b̂+(a), a*, and b*, and rearrang-
ing, we have that the latter inequality is satisfied iff

cA + cBð Þ2 − cBv2 2a cA + cBð Þ2cB − cA − cBð Þv� �
cA + cBð Þ2 a cA + cBð Þ2 + cAv

� �
2a cA + cBð Þ2 + cA − cBð Þvð Þ� ≥ 0 : (9)

Given that in region II we have cA > cB, the denominator is positive.
The numerator is weakly positive iff a ≥ ((cA − cB)=(2(cA + cB)

2cB))v.
Given that we are interested in cases in which party A plays a ≥ a*,
the condition becomes
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a* ≥
cA − cB

2 cA + cBð Þ2cB

v =
b* − a*

2cB
(10)

or

cB ≥
b* − a*

2a*
: (11)

QED
Lemma 3 provides a result that is analogous to lemma 2, with the

only relevant difference that the lemma is now applicable only to
the right of a specified threshold level of a. As is clear from figure A5,
also in this case, two of the relevant points in the set E can be either
above or below B’s reaction function, and we can use lemma 3 to prove
the result aswe didwith lemma2.We can therefore apply the reasoning
developed for region III to region II to show that party B does not have
incentives to deviate outside the equilibrium set Ewhenever the condi-
tion in lemma 3 is satisfied.

A2.4. Region I. Note that the condition in equation (11) can never
be satisfied in region I. Hence, this proposition applies to region III
and a portion of region II but does not apply to region I.

Repeating the same exercise for party A’s reaction function and
combining the results completes the proof. QED

A3. Proof of Proposition 2

Proof.Note that under the conditions of proposition 1 the point (0, 0)
is not part of the equilibrium set E unless cA = cB, a case that we dis-
cuss in section 5. Hence, here we can be sure that the discrete game is
bounded away from zero, that is, a* ≥ 1 and b* ≥ 1. Given the results
in proposition 1, we can focus on the restricted gamewith a ∈ fa*, a*g
and b ∈ fb*, b*g. Note that a* = a* + e and b* = b* + e. We have the
following payoffs matrix for (A, B):

b = b* b = b* + e

a = a* + e
�

a*+e

a* + e + b*
v − cA(a* + e),

b*
a* + e + b*

v − cBb*
�

�
a*+ e

a* + b* + 2e
v − cA(a* + e),

b* + e

a* + b* + 2e
v − cB(b* + e)

�

a = a*
�

a*
a* + b*

v − cAa*,

b*
a* + b*

v − cBb*
�

�
a*

a* + e + b*
v − cAa*,

b* + e

a* + e + b*
v − cB(b* + e)

�
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The equilibrium conditions are

• (a = a*, b = b*) is a Nash equilibrium if

a*

a* + b*
v − cAa* >

a* + e

a* + e + b*
v − cA a* + e

� �
b*

a* + b*
v − cBb* >

b* + e

a* + e + b*
v − cB b* + e

� �
or

cA >
b*

a* + e + b*
� �

a* + b*
� � v ; cA Að Þ

cB >
a*

a* + e + b*
� �

a* + b*
� � v ; cB Bð Þ

:

• (a = a* + e, b = b* + e) is a Nash equilibrium if

a* + e

a* + b* + 2e
v − cA a* + e

� �
>

a*

a* + e + b*
v − cAa*

b* + e

a* + b* + 2e
v − cB b* + e

� �
>

b*

a* + e + b*
v − cBb*

or

cA <
b* + e

a* + b* + 2e
� �

a* + b* + e
� � v ; cA Að Þ

cB <
a* + e

a* + b* + 2e
� �

a* + b* + e
� � v ; cB Bð Þ

:

• (a = a* + e, b = b*) is a Nash equilibrium if

cA < cA Að Þ
cB > cB Bð Þ

:

• (a = a*, b = b* + e) is a Nash equilibrium if

cA > cA Að Þ
cB < cB Bð Þ :

• There is a mixed strategy equilibrium in all other cases.
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Note that if a* > b*, we have cA > cA (and hence cA < cA and cA > cA

cannot be simultaneously satisfied) and cB > cB (and hence cB > cB

and cB < cB cannot be simultaneously satisfied) because:

cA ≥ cA

⇔

b* + e

a* + b* + 2e
� �

a* + b* + e
� � ≥

b*

a* + e + b*
� �

a* + b*
� �

⇔

b* + e

a* + b* + 2e
≥

b*

a* + b*

⇔

b* + e
� �

a* + b*
� �

≥ b* a* + b* + 2e
� �

⇔

a* + b* ≥ 2b*

⇔

a* ≥ b*

⇔

Floor
cB

cA + cBð Þ2 v
� �

≥ Floor
cA

cA + cBð Þ2 v
� �

⇔

cB ≥ cA

and similarly for the inequality cB > cB. Analogously, if a* < b*, we
have cA < cA (and hence cA < cA and cA > cA cannot be simultaneously
satisfied) and cB > cB (and hence cB > cB and cB < cB cannot be simul-
taneously satisfied). Let us now verify that the conditions for pure
strategy Nash equilibria do not overlap and that there are cases in
which the equilibrium is in mixed strategy. Tables 2 and 4 do the
work. The proof of the case with cA = cB is trivial. QED

A4. Proof of Proposition 3

Sketch of the Proof. (The full proof is available upon request.) We al-
ready know from proposition 1 that points lying on the four lines
a = a*, a = a*, b = b*, andb = b* are dominated by points inE.Hence,
to prove the uniqueness of the pure strategy Nash equilibrium, we only
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need to show that every other point on the vertices of the grid in the
(a, b) space admits a unilateral deviation to a point on one of these four
lines. We will do so by considering the case with cA ≥ cB (the opposite
case is analogous).

Let us start by using the lines a = a* and b = b* to divide the
plane into four regions as shown in figure A6 and examine each of
them in turn.

Region 1 (a < a* and b ≥ b*): Every point in region 1 is above B’s
reaction function. Hence, B will find it convenient to deviate
from any b > b* to b = b*.

Region 2 (a ≥ a* and b ≥ b*): Similarly, region 2 is entirely to the
right of A’s reaction function; A will find it convenient to devi-
ate from any a > a* to a = a*.

Region 3 (a ≥ a* and b < b*): Consider again the line b̂− (a) with
slope −1 passing through the point {a*, b*}, which was intro-
duced in lemma 2. We can then apply a similar reasoning as
we did in proposition 1 to show that for every point below this
line, B has an incentive to deviate to b*, and for every point
above this line, A has an incentive to deviate to a*.

Region 4 (a < a* and b < b*): Consider the horizontal line b = b̂,
with b̂ such that a**(b̂) = a*; this line crosses the point at
which A’s reaction function intersects the line a = a* for the
first time (the second time is obviously for b = b*), as depicted
in figure A6. Note that, by construction, the area above this
horizontal line is entirely to the left of A’s reaction function
and hence A will find it convenient to deviate from any a < a*
in this area to a = a*. Consider now the area below the horizon-
tal line and draw the line b = a, which divides the area into
two subareas, as in figure A6. Note that A’s payoff is greater
at a = a* than it is at a = b (proof omitted); then apply the same
reasoning as for region 3 to show that every point above the diag-
onal admits a unilateral deviation by A to a*. Similarly, B’s pay-
off is greater atb = b* than it is atb = a (proof omitted), and again
by the same reasoning, every point below the diagonal admits a
deviation to b*. This concludes the proof for region 4.

Summing up, all points in each of the regions inwhichwe have sub-
divided the plane admit a deviation to a point on one of the four lines
passing through E, and we know from proposition 1 that all points on
these lines admit a unilateral deviation to a point in E. We can con-
clude that if there is a pure strategy Nash equilibrium in E, then this
equilibrium must be unique. QED
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A5. Proof of Proposition 4

Proof. In a mixed strategy, A chooses a* with probability pA and
a* + e with the complementary probability 1 − pA, which are such
that B is indifferent between b* and b* + e. Similarly, B chooses
b* with probability pB. We have

pB
a*

a* + b*
v − cAa*

� �
+ 1 − pBð Þ a*

a* + e + b*
v − cAa*

� �

= pB
a* + e

a* + e + b*
v − cA a* + e

� �� �
+ 1 − pBð Þ a* + e

a* + b* + 2e
v − cA a* + e

� �� �
ðAÞ

pA
b*

a* + b*
v − cBb*

� �
+ 1 − pAð Þ b*

a* + e + b*
v − cBb*

� �

= pA
b* + e

a* + e + b*
v − cB b* + e

� �� �
+ 1 − pAð Þ b* + e

a* + b* + 2e
v − cB b* + e

� �� �
ðBÞ

or

cA = pBcA + 1 − pBð ÞcA Að Þ
cB = pAcB + 1 − pAð ÞcB Bð Þ

or

pA
* =

cB − cB

cB − cB
Að Þ

pB
* =

cA − cA

cA − cA
Bð Þ

:

QED

A6. Proof of Proposition 5

Proof. Given that, by definition, we have a* ≥ a* − e, the inequality
in equation (10) implies the following sufficient condition a* − e ≥
((cA − cB)=(2(cA + cB)

2cB))v, which can be rewritten as e ≤ ((2c2
B − cA +

cB)=(2(cA + cB)
2cB))v. Repeating the exercise for the case in which

cA > cB, we have the following threshold:

ê ; min
2c2

A − cB + cA

2 cA + cBð Þ2cA

v,
2c2

B − cA + cB

2 cA + cBð Þ2cB

v
	 


: (12)

If e ≤ ê, then also the condition in equation (10) must be satisfied.
It is easy to see that the condition in equation (12) is more easily sat-
isfied if v is large, if e is small, and if the costs are similar. Figure A7
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shows how this sufficient condition relates to the conditions in equa-
tion (4) and how sensitive is it to variation in e. QED

A7. Proof of Proposition 6

Proof. Let us start from the case in which cA < cB (the opposite case is
analogous). From proposition 2, we know that a mix strategy equilib-
rium occurs in the space ½cA, cA� × ½cB, cB�. If this space shrinks, the
mixed strategy equilibrium becomes less likely. Let us then consider:

cA − cA =
b* + e

a* + b* + 2e
� �

a* + b* + e
� � v −

b*

a* + e + b*
� �

a* + b*
� � v

=
a* − b*

a* + b*
� �

a* + b* + 2e
� �

" #
ev

a* + e + b*
� �

,

which decreases to zero if a* − b* approach zero, which is in turn the
case when costs are symmetric. An analogous reasoning applies to
the length of the second dimension, cB − cB. QED

A8. Proof of Proposition 7

Proof. To prove the proposition, it is sufficient to find parameter val-
ues such that the algorithm presented in proposition 2 fails to iden-
tify the equilibrium. Set v = 10, cA = 3:5, cB = 0:5, and e = 1. Note
that these parameters do not satisfy the conditions in proposition 1.
Then a* = 0:31 so that a* = 0 and a* = 1; similarly, b* = 2:18 so
that b* = 2 and b* = 3. Hence the equilibrium set is E =f(0, 2), (1, 2),
(0, 3),(1, 3)g. Finally, we have cA = 10=3 > 5=2 = cA and cB = 0 < 5=6 =
cB.

Because cA > cB, we can use table 4. Because cA > cA and cB <
cB < cB, table 4 suggests that the game should have the symmetric
Nash equilibrium (0, 2). However, it is easy to verify in table A2 that
(0, 2) is not an equilibrium because party B has an incentive to devi-
ate to (0, 1). QED
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Figure A3. Party B’s reactions in region III when (a*, b*) is below
and (a*, b*) is above B’s reaction function.

Figure A4. Party B’s reactions in region III when both (a*, b*)
and (a*, b*) are above the reaction function.
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Figure A5. Party B’s reactions in region II when (a*, b*) is above
and (a*, b*) is below B’s reaction function.

Figure A6. Uniqueness of the pure strategy equilibrium: (a) party
B’s reaction function; (b) both parties’ reaction functions.
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Figure A7. Scope of the sufficient condition in equation (12) (v = 10 and e = 1).

Figure A8. Values of cA and cB for which the sufficient condition
in equation (12) is verified for different values of e (v = 10).
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