
David L. Faigman
faigmand@uchastings.edu

Anthony Wagner

Richard J. Bonnie
rjb6f@virginia.edu

BJ Casey
bjc2002@med.cornell.edu

Andre Davis
tonya_allen@ca4.uscourts.gov

See next page for additional authors

Follow this and additional works at: https://scholarship.law.columbia.edu/faculty_scholarship

Part of the Health Law and Policy Commons, Law and Society Commons, and the Science and Technology Law Commons

Recommended Citation

This Working Paper is brought to you for free and open access by the Faculty Publications at Scholarship Archive. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of Scholarship Archive. For more information, please contact donnelly@law.columbia.edu.
Authors
Attached hereto:

G2i Knowledge Brief

A Knowledge Brief of the MacArthur Foundation Research Network on Law and Neuroscience

Cite as:

Owen D. Jones
Director, MacArthur Foundation Research Network on Law and Neuroscience
New York Alumni Chancellor's Chair in Law & Professor of Biological Sciences, Vanderbilt University

Richard J. Bonnie
Harrison Foundation Professor of Medicine and Law
Professor of Psychiatry and Neurobehavioral Sciences
Director, Institute of Law, Psychiatry and Public Policy
Professor of Public Policy
Frank Batten School of Leadership and Public Policy
University of Virginia

BJ Casey
Professor of Psychology, Yale University
Adjunct Professor, Weill Cornell Medical College, New York City
Director, Fundamentals of the Adolescent Brain Lab

Andre Davis
Judge, United States Court of Appeals for the Fourth Circuit

David L. Faigman
John F. Digardi Distinguished Professor of Law
Director of the UCSF/UC Hastings Consortium on Law Science & Health Policy
University of California, Hastings

Morris B. Hoffman
District Judge, Second Judicial District, State of Colorado

Read Montague
Professor of Physics
Professor of Psychiatry and Behavioral Medicine
Director, Human Neuroimaging Laboratory
Director, Computational Psychiatry Unit,
Virginia Tech & University College, London

Stephen J. Morse
Ferdinand Wakeman Hubbell Professor of Law
Professor of Psychology and Law in Psychiatry
University of Pennsylvania

Marcus E. Raichle
Professor of Radiology, Neurology, Neurobiology, Biomedical Engineering, and Psychology, Washington University

Jennifer A. Richeson
Philip R. Allen Professor of Psychology, Yale University
Director, Social Perception and Communication Lab

Elizabeth S. Scott
Harold R. Medina Professor of Law, Columbia University

Francis X. Shen
Professor of Law, University of Minnesota Law School

Laurence Steinberg
Distinguished University Professor
Laura H. Carnell Professor of Psychology, Temple University

Kim A. Taylor-Thompson
Professor of Clinical Law, New York University

Anthony Wagner
Professor of Psychology
Director, Stanford Memory Lab
Associate Director of the Cognitive & Neurobiological Imaging Center
Stanford University

Gideon Yaffe
Professor of Law
Professor of Philosophy & Psychology, Yale University

The MacArthur Foundation Research Network on Law and Neuroscience
Vanderbilt Law School, 131 21st Avenue South, Nashville, TN 37203
There’s a good chance that if you take an aspirin, your headache will disappear. Then again, it might not.

Decades of clinical trials conducted with hundreds of thousands of ordinary headache sufferers confirm that the humble aspirin really works. So, why isn’t your headache budging? The answer, or a version of it, is usually somewhere on the package insert: individual results may vary. The longer version of the marketing shorthand is this: Even the best science—science characterized by rich data collected from multiple experimental subjects or events and over multiple trials or experiments—frequently can tell us little, if anything at all, about the individual case.

Science seeks to understand general phenomena, not particular instances. Scientists typically don’t attempt to infer from group or population-based data (or “G”) to a particular individual (or “i”). Answering the individual question simply isn’t part of the everyday scientific enterprise. That’s why the applied science that is part of our everyday lives—whether in the form of drugs, diagnostic tests, or weather forecasts—doesn’t come with a promise. It comes with a probability.

G2i IN THE COURTS: MUDDLING THROUGH

The challenge of reasoning from group data to make decisions about individuals—a process we call “G2i”—is endemic in the modern courtroom. As in everyday life, that challenge is also frequently ignored, underestimated, or misunderstood.

Neuroscientists offer evidence that, on average, adolescents are less developmentally mature than adults. Cognitive psychologists testify to factors that contribute to eyewitness misidentification. Psychiatrists identify factors associated with “future dangerousness.” In each case, experts offer general statements about the empirical world based on aggregate data across groups of individuals. The courts, however, are typically looking for answers specific to the case at hand: Is or was this defendant developmentally mature? Was this eyewitness’s identification accurate? Will this defendant be violent in the future?

Courts are generally guided by one of two cases when it comes to admitting—or excluding—scientific evidence. Established in 1923, the *Frye* test asks whether the scientific methods supporting the expert
opinions are generally accepted in the particular fields from which they come. Seventy years later, the Supreme Court ruled that the applicable federal rules of evidence replaced Frye test with a validity test. Under that approach, first established in the case of Daubert v. Merrell Dow Pharmaceuticals, Inc., courts must determine whether the methods and principles underlying the expert opinion are reliable and valid. Today, Daubert is the rule in all federal cases. Most states have adopted it, as well, and many others have been influenced by its reasoning. Neither Frye nor Daubert, however, speak directly to G2i.

Courts are daily confronted with admissibility issues, some of which involve the existence of the general phenomenon (i.e., “G”) and others the question of whether a particular case is an instance of that general phenomenon (i.e., “i”). For instance, research might indicate that a particular abnormality in a part of the brain called the amygdala is associated with psychopathy. But many psychopaths have normal amygdalae and many non-psychopaths have abnormal amygdalae. So although, on average, psychopaths might have more abnormal amygdalae than non-psychopaths, a particular person’s amygdala is not diagnostic of psychopathy.

Unfortunately, courts have yet to carefully consider the implications of G2i for their admissibility decisions. In some areas, courts limit an expert’s testimony to the general phenomenon. They insist that whether the case at hand is an instance of that phenomenon is exclusively a jury question, and thus not an appropriate subject of expert opinion. In other cases, in contrast, courts hold that expert evidence must be provided on both the group-data issue, i.e., that the phenomenon exists, and what is called the “diagnostic” issue, i.e., that this case is an instance of that phenomenon.

Courts’ treatment of expert testimony on factors that might lower the accuracy of eyewitness identifications illustrates the “phenomenon only” approach. Courts generally permit eyewitness experts to testify about factors, such as cross-race identifications or stress, that might negatively affect accuracy. They do not permit testimony, however, on whether a particular identification was accurate or not. In United States v. Smith, for instance, the court explained that the value of this general testimony was educative: “Educating the jury about this research ... is an important step along the road to using improved scientific knowledge to create more accurate and fair legal proceedings.” The testimony was not, the Smith court emphasized, diagnostic: “Applying this research to the facts of the case is within the sole province of the jury.”

Yet in a host of other cases, the courts either demand or permit experts to offer diagnostic opinions on whether the case at hand is an instance of some legally relevant phenomenon. In medical causation cases, for example, a plaintiff must introduce expert testimony on both “G” and “i”. A plaintiff claiming that benzene exposure caused his or her leukemia, for instance, would have to introduce both general scientific evidence that benzene causes leukemia and scientific diagnostic evidence that exposure to benzene specifically caused his or her leukemia. In cases involving forensic identification—ranging from fingerprints to firearms—the courts generally allow experts to testify to both “G” and “i”. Thus, a firearms expert typically testifies that certain marks on cartridge cases are associated with a group of firearms and, additionally, that the marks on the cartridge case found at the crime scene were made by a specific gun.

Unfortunately, the cases in which the courts insist on, or permit, diagnostic testimony do not necessarily align with scientists’ ability to offer valid diagnostic opinions. It is exceedingly difficult to determine whether a particular case of leukemia is attributable to benzene exposure, and it’s impossible to say that the marks on a cartridge case came from a particular gun. A key insight of G2i, then, is that courts should assess an expert’s ability to provide empirical framework evidence separately from his or her ability to provide diagnostic evidence.

KNOWLEDGE AND ITS LIMITS:
THE ADOLESCENT BRAIN

Three decisions of the United States Supreme Court illustrate both how far we have come and how far we still have to go in understanding the limitations of scientific inference. All three cases involved group-level behavioral and neuroscience research that demonstrates that the brain, with its concomitant developmental capacities, does not fully mature until the early 20s.
In *Roper v. Simmons* (2005), the Court held that the Eighth Amendment did not permit imposing the death penalty on a defendant who had killed prior to his eighteenth birthday. Writing for the majority, Justice Kennedy implicitly acknowledged that justice must take into account both the validity of the “G”—the empirical evidence that on average the adolescent is not developmentally mature—and the difficulty of the “i,” that is, of knowing whether a particular adolescent is mature or not.

“[The differences between juvenile and adult offenders,]” Kennedy wrote, “are too marked and well understood to risk allowing a youthful person to receive the death penalty despite insufficient culpability.” Drawing a line at 18 years of age, the Court allowed, was arbitrary but necessary under the circumstances. “It is difficult even for expert psychologists to differentiate between the juvenile offender whose crime reflects unfortunate yet transient immaturity, and the rare juvenile offender whose crime reflects irreparable corruption,” he wrote.

In *Graham v Florida* (2009), the Court extended this reasoning to another set of juvenile offenders, those facing life without parole for crimes other than homicide. The decision, like the one in *Roper*, was categorical, applying to all individuals below the age of 18 at the time the crime was committed. Again, the Court explained, “even if we were to assume that some juvenile nonhomicide offenders...merit a life without parole sentence, it does not follow that courts taking a case-by-case proportionality approach could with sufficient accuracy distinguish the few incorrigible juvenile offenders from the many that have the capacity for change.”

Finally, in *Miller v. Alabama* (2013), the Court concluded that the Eighth Amendment also prohibits mandatory life without parole for juveniles convicted of homicide. Citing both *Roper* and *Graham*, once again the Court’s decision referenced scientific findings that “both lessened a child’s ‘moral culpability’ and enhanced the prospect that, as the years go by and neurological development occurs, his ‘deficiencies will be reformed.’” It also reiterated the previously noted difficulty of distinguishing between “transient immaturity” and “irreparable corruption.”

Yet in *Miller*, the Court declined to “foreclose a sentencer’s ability” to make that distinction. That is, unlike *Roper* and *Graham*, *Miller* gave courts the option of sentencing youthful offenders to life without parole on a case-by-case basis, despite the fact that there is no available neuroscience research to aid such a determination. There is no neural signature for maturity, no single psychological test that directly reveals how well developed an individual person is. Justice Kagan, writing for the *Miller* Court, did note the incongruity between the earlier cases of *Roper* and *Graham* and the one before her. She believed that the scientific studies regarding the average maturity of adolescents might create something of a presumption against Life Without Parole sentences for youthful offenders. As she put it, “appropriate occasions for sentencing juveniles to this harshest possible penalty will be uncommon.”

Do the inherent challenges of G2i, then, constitute an unbridgeable gulf between science and the law? We think not. Although G2i describes a fundamental divide between the two disciplines, and perhaps no single structure is available to bridge it—at least, not yet—it’s a division that might be managed effectively.

Effective management will depend both on paying attention to the specific legal context and on the science that might be available at the time in each of those contexts. Consider, for example, the issue raised by the *Miller* case. The Court found that the state of the science indicated legally relevant differences in maturity between adolescents and adults, which supported its ruling that it was unconstitutional to sentence adolescent homicide offenders to mandatory life in prison. The science on adolescents as a group thus helped establish the constitutional rule. But, as a practical matter, courts must now sentence individual adolescents. Almost certainly, at sentencing the parties will seek to introduce “scientific” expert testimony that supports their side—for the defendant, that he was developmentally immature at the time of the crime and, for the prosecution, that the defendant was as developmentally mature as an average adult when he committed the crime.

Should courts admit this form of diagnostic expert evidence? The answer rests on a G2i evaluation and, specifically, whether the scientific foundation is sound enough to permit a valid opinion about the individual case. If the answer is no, other evidence, evidence from non-experts (i.e., family, friends, police, victims, etc.) can still be introduced to demonstrate
the defendant’s level of developmental maturity at the
time of the crime. Just as in the case of eyewitness
identification research, the general framework
research on adolescent behavioral and brain
development is valuable and admissible. Whether a
particular individual is or is not mature continues to be
a pivotal legal issue, but may not be one that science
can answer with any certainty.

MANAGING THE G2i DIVIDE

Managing G2i requires, foremost, the active
involvement of both legal scholars and scientists.
For the courts, adopting just two key best practices
will help reduce the complexity that contemporary
science has added to the already complex adjudicative
task. First, courts must begin their consideration of
scientific evidence by focusing on both whether it is
“good”—that is, meets certain evidentiary standards—and on what it’s good for. Every case involving expert
evidence involves a choice: admit testimony about
the general phenomenon, or admit such general
testimony and diagnostic testimony. The first decision
is separate from the second. Furthermore, diagnostic
testimony cannot be admissible unless the testimony
on the general phenomenon is also admissible; evidence that something is an instance of a larger
phenomenon presumes that the larger phenomenon
itself exists.

Second, only after the court has decided whether
the expert testimony concerns a general phenomenon,
or concerns whether a particular case is an instance
of that phenomenon, should it determine whether
that testimony is admissible. While few courts
realize it, the primary criteria derived from Daubert—
i.e., relevance, qualifications, scientific validity, added
value or helpfulness, and unfair prejudice—operate
differently depending on how the evidence is to
be used.

For scientists, and the experts who testify to the
science, a host of issues should be paramount. The
process of reasoning from group data to individual
cases, of course, is principally a scientific one and,
more particularly, a matter of statistical inference.
The scientific community might begin by asking
which methods or tools might be available or could
be developed to facilitate the process. The issue
of G2i reasoning is not unique to the courtroom.
Meteorologists study storms, but we want to
know whether a storm will hit during our commute
tomorrow morning. Medical researchers study the
effectiveness of drugs, but we want to know whether
a particular drug will relieve our headache or, possibly,
cause some side effects. Ordinarily, the G2i issue
is translated into group statistical terms: “there’s
a 60 percent chance it will be raining at 8:30 a.m.
tomorrow.” In court, decision makers often need to
translate those probabilities into more categorical
terms, such as guilty/not guilty, liable/not liable,
mature/not mature, and causation/no causation.
Scientists could assist the process considerably
by helping courts understand and translate the
probabilities derived from group data to help legal
decision makers decide individual cases.

Scientific advances in understanding the challenges of
G2i, however, might not be far off. For instance, we
may be on the cusp of an explosion of high-quality
“precision” science in realms from neuroscience to
genetics to nanotechnology. One tantalizing promise
of science in the 21st century is knowledge at the
level of the individual, and the challenge for courts
in the 21st century is to distinguish between that
promise and reality. Developing and refining a more
sophisticated understanding of science, along with
evidentiary guidelines that reflect that understanding,
will enable the courts to meet that challenge now and
in the decades to come.

To learn more
For a full discussion of the material presented in this summary, including how evidentiary standards change depending whether
an expert is offering framework or diagnostic testimony, see Group to Individual (G2i) Inference in Scientific Expert Testimony,

For an example of how the best practices described in the above article might apply to a specific discipline, see Toward a
Jurisprudence of Psychiatric Evidence: Examining the Challenges of Reasoning from Group Data in Psychiatry to Individual

For more information about the work of the MacArthur Foundation Law and Neuroscience Network, visit www.lawneuro.org.