Balance in the Taxation of Derivative Securities: An Agenda for Reform

David M. Schizer
Columbia Law School, david.schizer@law.columbia.edu

Follow this and additional works at: https://scholarship.law.columbia.edu/faculty_scholarship

Part of the Tax Law Commons

Recommended Citation
Available at: https://scholarship.law.columbia.edu/faculty_scholarship/182

This Article is brought to you for free and open access by the Faculty Publications at Scholarship Archive. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of Scholarship Archive. For more information, please contact scholarshiparchive@law.columbia.edu.
It is well understood that aggressive tax planning with derivatives threatens the U.S. income tax system. The conventional solution to this threat has been consistency, meaning that the same tax treatment should apply to all economically comparable bets, regardless of the form used. Yet familiar political and administrative barriers stand in the way of achieving this lofty goal.

This Article develops a reform agenda to eliminate tax planning without requiring consistency. Policymakers should strive instead for a new goal, which this Article calls “balance”: For each risky position, the treatment of gains should match the treatment of losses. For example, if the government bears 15% of losses, it should share in 15% of gains. On a different derivative, if the government bears 35% of losses, it should share in 35% of gains. As long as this balance is achieved across the board for all risky bets, the admittedly counterintuitive reality is that taxpayers need not prefer—or engage in planning to attain—a low effective rate. An important caveat is that this analysis works only for risk-based returns, but not for wages or time-value returns.

In a nutshell, if policymakers separate risk-based returns from any interest or wages embedded in derivatives, balanced taxation of risk-based returns will eliminate planning, with or without consistency. This Article provides policymakers with a detailed reform agenda, critically analyzes the strengths and weaknesses of the strategy, and applies this agenda to several cutting-edge issues in the taxation of derivative securities.

Table of Contents

Introduction .. 1888
I. The Unattainable Goals of Symmetry and Consistency .. 1893
 A. The Familiar Failings of Our Tax Rules for Derivatives 1893

* Dean and Lucy G. Moses Professor of Law, Columbia Law School. I am particularly indebted to Reed Shuldiner, who twice served as a commentator on this Article and offered insightful comments both times. I am also grateful for the comments of David Bradford, Terry Chorvat, Dale Collinson, Victor Fleischer, David Garlock, William Gentry, Mark Gergen, Michael Graetz, Dan Halperin, David Hariton, Louis Kaplow, Avery Katz, Charles Kingson, Michael Knoll, Stephen Land, James Mackie, Clarissa Potter, Alex Raskolnikov, Michael Schler, Scott Semer, David Shakow, Dan Shaviro, Martin Shubik, Ted Sims, Jeff Strnad, Al Warren, David Weisbach, Larry Zelenak, and participants at workshops at Boston University, Columbia, Harvard, Michigan, Northwestern, U.C.L.A., the American Tax Policy Institute, and the Tax Forum. I would also like to thank J.J. Gifford for his very helpful research assistance and Zachary Tripp for his fine editorial work. Please relay comments to dschiz@law.columbia.edu. Finally, I appreciate the financial support of the American Tax Policy Institute.
B. Symmetry .. 1893
C. Consistency .. 1895

II. THE CRITERION OF BALANCE 1896
A. Balance and the Unimportance of Inconsistencies ... 1897
1. Market Uncertainty. 1898
2. Scaling Up. 1898
3. Reality Check. 1899
4. Caveat on Time Value and Wages. 1900
B. "Nonprepaid" Derivatives: Risky Bets That Can Be
 Scaled Up Cheaply 1901
1. "Nonprepaid" Derivatives: Pure Risk Without Time
 Value and Wages 1901
2. Scaling Up Nonprepaid Derivatives is Cheap 1903
 a. Elastic Supply of Derivatives 1903
 b. Credit Constraints 1905
 c. Regulatory Constraints 1907

III. REFORMING THE TAXATION OF DERIVATIVES WITH AN AGENDA
 BASED ON BALANCE 1908
A. Setting the Gain-Loss Ratio at One: A Survey of Key
 Issues .. 1908
 1. Character and Rates 1908
 2. Timing ... 1909
 3. Ex Post Reclassification 1911
B. Consistent Treatment of Time-Value Returns and
 Wages ... 1912
 1. Time-Value Returns 1912
 2. Wages ... 1913
C. Hedging and Other Integration Rules 1914

IV. NORMATIVE ASSESSMENT: ADVANTAGES OF THE AGENDA FOR
 REFORM .. 1915
A. Risk-Taking Is Not Discouraged 1915
B. Inconsistency Without Planning 1916
C. Freedom to Focus on Administrability 1916
D. An Illustration of this Agenda's Flexibility: Three
 Alternative Approaches for Derivatives 1917
 1. Mark-to-Market Accounting for Derivatives 1917
 a. Eliminating the Timing Option and Related
 Planning 1918
 b. Pressure on the Boundary with Wages and
 Time-Value Returns 1919
 c. Compliance and Monitoring Burdens 1919
 2. Stated-Term Approach 1920
 a. Eliminating the Timing Option and Related
 Planning 1920
 b. Pressure on the Boundary with Wages and
 Time-Value Returns 1921
INTRODUCTION

It is well understood that aggressive tax planning among high-income individuals and corporations represents a threat to the U.S. tax system, and that derivatives are staples of this planning. As a result, less
revenue is collected, and the system becomes less efficient and less equitable in familiar ways. Even when the use of derivatives is not tax-motivated, moreover, the relevant tax rules are complicated but still fail to provide answers to basic questions—obviously, a frustrating combination.

In response, there have been many proposals to reform the taxation of derivatives. The usual recommendation is consistency, meaning that the same tax treatment should apply to economically comparable bets, regardless of what form is used. Thus, the same timing rule and rate (whose combined effect is called the "effective tax rate") should govern any bet on the value of IBM stock, whether it is an option, forward contract, swap, or contingent bond. In theory, we could achieve consistency through various fundamental reforms, ranging from a properly structured consumption tax, on one hand, to the universal use of mark-to-market accounting or a more administrable proxy, on the policy questions.

2. An option gives the holder the right, but not the obligation, either to buy or sell the underlying property for a specified price during a specified period. A "call" is an option to buy, and a "put" is an option to sell. For example, a call option might entitle the holder to buy the underlying property for $100 at any time during the next two years.

3. Unlike an option, a forward contract is an obligation. It commits the parties either to buy or sell the underlying property for a specified price during a specified period. For example, the buyer (known as the "long") commits to buy the underlying property from the seller (known as the "short") for $110.25 in two years.

4. A swap is, in effect, a series of cash-settled forward contracts. In some swaps, differences in the value of the underlying property are settled up every period. For example, assume that the underlying property is $100 when the swap begins. In the first year, if the property declines to $60, the long pays the short $40. In the second year, if the property appreciates to $110, the short pays the long $50. In other swaps, by contrast, these changes in value are not taken into account until a final "nonperiodic" payment is made when the swap matures. In both types of swaps, the long pays the short a finance charge, usually every period.

5. In a contingent debt instrument, the borrower pays interest (and sometimes a portion of the principal) based on some financial fact. As an economic matter, contingent debt is sometimes viewed as the synthesis of a standard loan with a derivative, such as an option.

7. One possibility is to charge interest on tax deferral. See, e.g., Alan J. Auerbach, Retrospective Capital Gains Taxation, 81 Am. Econ. Rev. 167, 168 (1991) (proposing to tax capital gains upon realization but to charge interest, thereby eliminating incentive to defer such realization); Cynthia Blum, New Role for the Treasury: Charging Interest on Tax Deferral Loans, 25 Harv. J. on Legis. 1, 4 (1988) (arguing that it is administrable to charge interest on tax deferrals in most instances); see also Warren, Innovation, supra note 1, at
other. Yet although these fundamental reforms are appealing, familiar political and administrative barriers stand in the way, rendering consistency unattainable for now.

So what is the alternative? Even good ideas are unhelpful if we cannot make use of them. Instead, policymakers need a new theory to grapple with this seemingly intractable problem. To fill this gap, this Article develops a reform agenda for derivatives that does not require the holy grail of consistency. Policymakers should strive instead for a new goal, which this Article calls "balance." This means that for each risky position, the treatment of gains should match the treatment of losses. For example, if the government bears 15% of losses, it has to share in 15% of gains. On a different derivative, if the government bears 35% of losses, it should share in 35% of gains. As long as this balance is achieved across the board for all risky bets, the admittedly counterintuitive reality is that taxpayers need not prefer—or engage in planning to attain—a low effective rate. A low rate obviously is appealing for gains, but it is correspondingly unappealing for losses (since deducting the loss is less valuable). Moreover, as David Bradford has emphasized, even if a low rate is desired, taxpayers can get the same aftertax return by increasing the size of their bet. For instance, to cancel out a 50% tax, the taxpayer can bet on the value of two shares instead of one. An important caveat is that this analysis works only for risk-based returns, but not for wages or time-value returns. As a result, consistent timing and character rules are still needed for these returns. In a nutshell, if policymakers separate risk-based returns from any interest or wages embedded in derivatives, balanced taxation of risk-based returns will eliminate planning, with or without consistency.

482 ("Serious consideration should therefore be given to moving . . . to at least some formulaic taxation of contingent returns," such as the "retrospective allocation of gain" or the imputation of interest at a standard rate of return). Another possibility is to impute interest on time-value returns, while using realization accounting for risk-based returns. See Shuldiner, General Approach, supra note 1, at 283–85, 335–36.

Following Professor Shuldiner and others, this Article distinguishes between time-value returns and risk-based returns. Time-value returns reward investors for parting with the use of their money; in return, they earn the risk-free rate. In addition, investors earn a return for taking risk, which can be positive or negative. Investors also are compensated for inflation. Because inflation has consistently remained at very low levels, this Article generally does not consider its implications.

8. Acknowledging that consistency is not possible, Professor Weisbach has argued for what might be called a limited form of consistency: applying the same treatment to transactions that are sufficiently similar, based on cross-elasticity of taxpayer demand. See David A. Weisbach, Line Drawing, Doctrine, and Efficiency in the Tax Law, 84 Cornell L. Rev. 1627, 1659–63 (1999).

10. This Article focuses on domestic tax issues such as timing and character. Although this Article's "matching" agenda also has application to cross-border tax issues, international issues are not considered here.
This reform proposal can claim a distinguished lineage, since it follows logically from an old idea in public finance economics. Over half a century ago, Evsey Domar and Richard Musgrave showed that a heavy tax burden does not discourage risk-taking—and, more fundamentally, that the tax rate on risk-based returns is unimportant—as long as two assumptions hold. First, the government's share of gains must match its share of losses. Second, taxpayers must be able to adjust the size of their risky bets costlessly. Although the Domar and Musgrave theory has had some influence in the legal academy—most notably in showing that, on certain assumptions, income and consumption taxes are surprisingly similar—the theory has inspired little by way of concrete reform proposals. The reason is that its core assumptions are commonly dismissed as far-fetched because of the inherent cost in enlarging an investment. This Article, however, emphasizes a context in which scaling up is relatively cheap: derivatives. Indeed, an important motivation of this Article is to "tame" the Domar and Musgrave theory, showing that it is capable of offering level-headed applications.

Even more important, the objective here is to provide policymakers with an agenda for incremental reform, as well as a critical analysis of the strategy's strengths and weaknesses. The main advantage is flexibility. Although policymakers have to match the treatment of gains and losses, they are free to pursue this goal in various ways, depending upon the context. To prove this point, this Article outlines three ways to match

13. For a summary of difficulties with these assumptions, see Bankman & Griffith, supra note 12, at 397-98.
gains and losses on derivatives: mark-to-market accounting; a novel re-
form called the “stated-term approach,” in which gains and losses are de-
ferred until the scheduled maturity date of the derivative, even if the con-
tract is terminated earlier; and a zero tax rate. The provocative
conclusion is that these thoroughly inconsistent approaches can coexist
for economically comparable derivatives without prompting planning. By
eliminating planning waste and making the rules more administrable,
this agenda enhances the tax system’s efficiency and equity.

This is not to say that the proposal here solves all problems. If gains
and losses are matched successfully in some sectors but not others, waste-
ful planning continues as taxpayers shift into and out of particular sec-
tors—something that, obviously, already happens under current law. In
addition, this Article’s proposal does not allow policymakers to apply pro-
gressive rates to risk-based returns on derivatives. Yet this also represents
a (surprisingly) modest departure from current law, which already ap-
plies a flat rate to vast pools of risk-based returns. If greater progressivity
in the system is desired, distributional goals should be pursued through
the rate structure for wages and time-value returns.

While this reform agenda has broad application, this Article focuses
on five cutting-edge issues in the taxation of derivatives. First, Alvin War-
ren has warned that corporations can engage in arbitrage because section
1032 of the Internal Revenue Code applies a zero rate to some transac-
tions relating to their stock, but not others. Yet this Article shows why
such arbitrage is not as attractive as Professor Warren suggests, and why
other aspects of section 1032 are more problematic. Second, the Article
considers the tax rules for derivatives and life insurance based on the
value of a hedge fund. While the constructive ownership rule of section
1260 addresses hedge fund derivatives, this Article suggests improvements
to this 1999 reform, while also giving guidance about life insurance, an
investment section 1260 does not expressly cover. Third, this Article
identifies reforms needed in the character of swap payments. Fourth, an-
other “hot” topic is the timing rule for so-called contingent nonperiodic
payments on swaps, which are the subject of proposed regulations is-
sued in February 2004. Applying the agenda developed here, this Arti-
cle critiques the government’s approach and offers simpler alternatives.
Finally, this Article outlines a reform strategy for the wash sale rules.

Part I begins with the ideals of symmetry and consistency, which con-
stitute the conventional, but unattainable, reform agenda for derivatives.
Part II shows that, as an alternative, balance can constrain planning as
long as it is cheap for taxpayers to adjust the size of their investments, and
then demonstrates that this precondition is relatively plausible for deriva-

at 47, 48 [hereinafter Warren, Options].
15. A hedge fund is a private investment fund that is open only to wealthy investors.
16. For a definition, see supra note 4.
Part III sketches the broad outlines of a reform agenda based on balance. Part IV lays out the advantages of this agenda, while Part V analyzes its limitations. Part VI offers concrete applications.

I. The Unattainable Goals of Symmetry and Consistency

In the abstract, the goals of our tax system are well understood. We want the system to raise revenue efficiently and fairly. Ideally, the rules would be easy to understand and apply, and there would be nothing to gain from tax-motivated restructurings. Unfortunately, the tax rules for derivatives come nowhere close to achieving these goals.

A. The Familiar Failings of Our Tax Rules for Derivatives

Although at times mind-numbingly complex, the relevant provisions offer little in return for this complexity. Important issues remain unresolved, and the rules fail to stop many aggressive strategies. At the same time, there are distortions in taxpayer incentives to take risks. In short, these rules are a model of inefficiency.

For the same reasons, the rules have unappealing distributional implications. Wealthy investors reduce the tax burden on their investments, and sometimes even shelter their salaries. Yet these strategies are not available to less sophisticated taxpayers (e.g., taxpayers with less than $1 million of liquid investments): Various regulatory restrictions, such as the federal commodities laws, prevent investors from using derivatives unless they satisfy minimum wealth tests. In short, the current rules for taxing derivatives are often regressive in practice.

It is also hard for the political process to monitor these tax provisions. The relevant rules and strategies are so complex that only experts understand them. But experts develop their expertise in the service of clients who do not want the details of their planning shared with government officials or the media. As a result, wealthy taxpayers secure tax reductions underneath the political radar.

What can we do to solve these problems? Symmetry and consistency are the most common proposals to eliminate planning. While theoretically appealing, both are limited in their practical utility, and thus neither is likely to eliminate these problems.

B. Symmetry

Symmetry means that both sides of a transaction are taxed under the same timing rule and rate. As Reed Shuldiner has shown, this condi-

18. For empirical support, see text accompanying infra notes 74, 147–153.
20. There are subtle differences in the way various commentators have used the term symmetry. Compare Shuldiner, General Approach, supra note 1, at 286–87 (using "symmetry" to mean that the tax consequences of a transaction are equivalent for both
tion makes a policymaker's job easier in two ways. First, revenue is no longer an issue for derivatives. On a net basis, the government does not collect or lose any revenue. The reason is that derivatives are "zero sum" bets: One side's winnings equal the other side's losses. By imposing a tax, the government collects revenue from the winner; but by allowing a deduction, the government shares in the loser's losses. If the tax rate and timing rule are the same for winner and loser—that is, if symmetry applies—the government's share of gains perfectly cancels out its share of losses, leaving net revenue of zero.

Second, symmetry means that any tax advantage to one side of a derivative (such as deferral of gains or acceleration of losses) is matched by an offsetting tax cost to the other side (such as deferral of losses or acceleration of gains). For example, assume that Ann and Bob place a three-year bet on the price of gold, and the market immediately moves against Ann. The standard tax advice is for her to deduct this loss right away. Reducing her tax burden now, instead of in three years, erodes the present value of her overall tax burden. Yet Ann has a problem if she needs Bob's permission to claim the deduction now, for instance, because she needs to terminate the bet early. Bob will refuse if the rules are symmetrical—that is, if the same rate and timing rules govern Bob as well as Ann. Symmetry implies that Ann cannot accelerate her deduction without also accelerating Bob's income. In reducing her own taxes, she increases Bob's taxes by the same amount. He will demand compensation for his increased tax bill. But it is not worth Ann's while to pay him this compensation, since she needs to pay over the full amount of her tax savings.

In theory, then, symmetry gives competing incentives to the parties to a derivative, allowing the system to police itself. In reality, though, symmetry is unattainable. Tax-exempt organizations and foreigners pay no U.S. tax and, thus, should be willing to accommodate the tax planning of counterparties. Securities dealers usually are equally ingratiating. Although they are not tax-exempt, dealers are subject to different timing and character rules than their clients. Generally, dealers mark securities to market, and their gains and losses are ordinary in character. As a result, if a client wants to accelerate a deduction by terminating a contract early, this step will not accelerate a dealer's income; rather, as a mark-to-market taxpayer, the dealer already is taxed currently on this income whether the derivative is terminated or maintained. It is straightforward, then, for tax-indifferent parties such as dealers or foreign banks to

facilitate the tax planning of taxable counterparties. In short, symmetry is rarely a constraint.

C. Consistency

Since symmetry is unattainable, the conventional wisdom is that we should strive instead for consistency.23 As noted above, a system is consistent if all economically comparable transactions are taxed the same way, regardless of what form the taxpayer chooses. The revenue loss, inequities, and inefficiencies associated with inconsistency are easy to see. For example, assume that Ann wants to invest her savings, and she can earn the risk-free rate on a U.S. Treasury bond, which is taxed at 35%, or in a variable life insurance policy, which is taxed at a zero rate. In the absence of symmetry, this inconsistency leads to revenue losses while making the tax system less efficient. Good tax advice becomes more valuable. Taxpayers adopt investment forms that otherwise do not make sense.

These problems evaporate, though, if policymakers square the treatment of the Treasury bond and life insurance. When the rules are consistent, Ann no longer needs an advisor to tell her how to tweak her deal. Thus, it is well understood that consistency puts tax planners out of business, even in the absence of symmetry. Needless to say, it would be appealing to have a truly consistent tax system (assuming it was administrable). But as noted above, we would need fundamental tax reform to achieve this dream and, for any number of familiar reasons, we should not hold our breath for it.

Instead, we are left with a seemingly intractable mess. The tax rules for financial transactions are profoundly inconsistent. For example, in structuring a derivative, taxpayers can choose among five different classes of tax rates: ordinary; short-term capital; a 60-40 blend of long-term and short-term capital; long-term capital; and a zero rate. The return is capital on forward contracts and ordinary on contingent debt and certain swaps.24 Meanwhile, the 60-40 blend applies to certain publicly traded derivatives, known as section 1256 contracts.25 A zero rate governs life insurance (e.g., in which the death benefit is based on some financial fact, such as the value of a hedge fund)26 and certain derivative transactions by a corporation in its own stock.27

Timing rules are, if anything, even more inconsistent. They include mark-to-market, two types of interest imputation regimes, and variations of realization accounting. Section 1256 contracts are marked to market, as are all derivatives of securities dealers and electing securities and commodities traders.28 On contingent debt instruments, interest is imputed

23. See supra notes 2–8 and accompanying text.
26. Id. § 101.
27. Id. § 1032.
28. Id. § 475.
based on an assumed yield, and adjustments are made upon realization.\(^2\)

A similar regime has been proposed for certain swaps,\(^3\) and the government has invited comments on extending it to prepaid forward contracts and certain options.\(^4\) Meanwhile, a different imputation system applies to so-called constructive ownership transactions; tax consequences are deferred until realization, and an interest charge is added to the tax.\(^5\)

In contrast, traditional realization accounting generally applies to other instruments, including forward contracts, securities futures, and options that are not section 1256 contracts.

Out of this welter of inconsistencies, it is worth flagging two that have attracted particular attention of late, and thus are discussed in more detail below. First, as Alvin Warren has emphasized, section 1032 applies a zero rate when corporations trade options on their own stock, but the rule does not expressly govern swaps. Second, when taxpayers invest directly in a hedge fund, gains are usually taxed currently at short-term rates (because hedge funds engage in frequent trading). In contrast, before a 1999 reform, derivatives based on the fund's value offered deferral and long-term rates. Even today, life insurance based on the hedge fund's value is taxed at a zero rate.\(^6\) What, if anything, should be done about these inconsistencies?

More fundamentally, if symmetry and consistency are unattainable in the foreseeable future, what should we do? After all, a new regime for a particular type of derivative can never be symmetrical, given the presence of tax-indifferent parties. Likewise, a new rule cannot be consistent with the rules for other types of derivatives, since these precedents are themselves inconsistent. So policymakers need a new criterion for evaluating whether an incremental reform is advisable. The next Part offers such a criterion, known as balance, and Part III then uses it as the centerpiece of an agenda for reform.

II. The Criterion of Balance

Even if symmetry and consistency are unattainable, there is another way to curtail tax planning, one that Domar and Musgrave emphasized years ago: Policymakers can ensure that the treatment of risky bets is balanced. This means that, for each risky bet, the timing and character of

\(^{29}\) Treas. Reg. § 1.1275-4.

\(^{32}\) I.R.C. § 1260. A constructive ownership transaction is a derivative that replicates the return on particular types of underlying property, including hedge funds.

\(^{33}\) The assumptions here are that section 1260 does not reach life insurance and that other requirements are satisfied. For a discussion, see Schizer, Frictions as Constraint, supra note 19, at 1385–90.
gains must match the timing and character of losses. Once this goal is achieved, the (perhaps surprising) reality is that inconsistencies become much less important.

But two familiar caveats are significant. First, balance is more likely to constrain tax planning only if taxpayers can cheaply adjust the size of their bets. In other words, it must be easy to "scale up" a risky bet. The second caveat follows from the first. Given the need to scale up costlessly, this reform strategy works only for risk-based returns, not for time-value returns and wages. If these are taxed inconsistently, taxpayers still have strong incentives to plan. In light of these caveats, it is easy to think that "balance" is a pie-in-the-sky idea with few practical applications. But this is not the case. This Article identifies a large set of important investments that typically satisfy these conditions: swaps, futures contracts, forward contracts, and other "nonprepaid" derivatives.

A. Balance and the Unimportance of Inconsistencies

This section shows that as long as policymakers match the treatment of gains and losses on each risky bet, they do not need the further step of consistent treatment for all risky bets. To assess whether gains and losses match in this way, this Article introduces the term "gain-loss ratio" to compare the government's share of potential gains from a given position with its share of potential losses:

\[
\text{Gain-Loss Ratio} = \frac{\text{Government's Share of Gains}}{\text{Government's Share of Losses}}
\]

Tax planners obviously want the gain-loss ratio to be less than one (so that the government's share of losses exceeds its share of gains). The government will have the opposite preference if its priority is to collect revenue (so that its share of gains exceeds its share of losses).\(^{34}\) Meanwhile, a gain-loss ratio of one means that the rule is balanced, such that the treatment of losses perfectly matches the treatment of gains.

Balance constrains planning, even in the absence of symmetry and consistency. To see the point, consider a coin toss in which the taxpayer receives $100 if she wins, but must pay $100 if she loses. Due to an inconsistency, two different effective tax rates could apply. If a quarter is tossed, the tax rate is zero (and losses are not deductible). If instead a nickel is flipped, a 50% rate applies (and the government bears 50% of losses). Assume further that the taxpayer's counterparty is tax-exempt (so that there is no symmetry here). At first blush, we might expect tax-

\(^{34}\) Gain-loss ratios greater than one can arise, for instance, as a result of limitations on the deductibility of losses or a progressive rate structure. For a discussion of progressivity, see infra Part V.B.
payers to prefer the zero tax rate. Nevertheless, there are two reasons why this is not the case for risky bets.

1. Market Uncertainty. — First, although a low rate is better for gains (and so, for that matter, is deferred timing), a high rate is obviously better for losses (as is accelerated timing). The reason is that with a higher effective rate, the taxpayer's ability to deduct losses becomes more valuable. A deduction allows a taxpayer to avoid tax on other income, and the deduction's economic value depends on the effective tax rate that otherwise would apply to this sheltered income. The higher this rate, the sweeter the deduction. If a 50% effective rate would otherwise apply, every dollar of deduction is worth 50¢, which means the government bears half of the losses. But if the zero rate would otherwise apply, the deduction has no value, which means the government bears none of the losses. Either way, the expected value of the bet in our example is zero. In fact, as long as the gain-loss ratio is one, the 50% tax affects only the bet's volatility: Instead of either winning or losing $100, the taxpayer now has only $50 at stake.

The analysis is the same even if the risky bet has a positive expected value. In the above coin toss, assume that the taxpayer still pays $100 if she loses, but now earns $104 if she wins. The expected value of the new bet is $2, which represents the premium rewarding the taxpayer for bearing a 50% risk of losing $100. If a 50% tax is introduced, the after-tax expected value of the bet admittedly falls from $2 to $1. But at the same time, the bet also becomes half as risky (i.e., the most the taxpayer can lose is $50, instead of $100). In effect, the government is earning its share of the risk premium for bearing risk. As a result, a risk-averse taxpayer will not necessarily mind this deal.

Of course, there are various reasons why a taxpayer may not want the government to siphon away a portion of the bet in this way. If the expected value is positive, a risk-neutral taxpayer may want to bear more risk as a way to earn a larger return. Even if the expected value is zero, moreover, the taxpayer may be more optimistic because of, for instance, special information or cognitive biases.

2. Scaling Up. — But even with these reservations, the tax on risky bets is still unimportant: As Professors Domar and Musgrave showed over half a century ago, if the taxpayer wants to replace the risk siphoned off by the tax, she can increase the size of her bet.\(^3\) Instead of wagering $100, she can make the pretax bet $200, leaving a $100 bet after taxes.\(^6\) More generally, the bet needs to increase by \(1/(1-T)\), where \(T\) is the tax rate. This is easy to see for a bet with a zero expected value:

\[35. \text{See generally Domar & Musgrave, supra note 11.} \]

\[36. \text{If she wins, she keeps 50% of $200 (or $100). If she loses, she pays 50% of $200 (or $100).} \]
TABLE 1: SCALING UP A RISKY BET WITH ZERO EXPECTED VALUE

<table>
<thead>
<tr>
<th>Size of Bet</th>
<th>Tax Rate</th>
<th>Aftertax Gain (50% likely)</th>
<th>Aftertax Loss (50% likely)</th>
<th>Aftertax Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>100</td>
<td>(100)</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>50%</td>
<td>50</td>
<td>(50)</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>50%</td>
<td>100</td>
<td>(100)</td>
<td>0</td>
</tr>
</tbody>
</table>

The same analysis holds for a bet with positive expected value:

TABLE 2: SCALING UP A RISKY BET WITH POSITIVE EXPECTED VALUE

<table>
<thead>
<tr>
<th>Size of Bet</th>
<th>Tax Rate</th>
<th>Aftertax Gain (50% likely)</th>
<th>Aftertax Loss (50% likely)</th>
<th>Aftertax Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>104</td>
<td>(100)</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>50%</td>
<td>52</td>
<td>(50)</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>50%</td>
<td>104</td>
<td>(100)</td>
<td>2</td>
</tr>
</tbody>
</table>

To cancel out a 50% tax, the taxpayer can simply double the bet. By wagering $200, she replicates the same cash flows, risk, and expected return that she would earn with a $100 bet and a zero tax rate.\(^3\) A key point here is that the taxpayer must be able to scale up the bet costlessly (so that she is still earning $100 after taxes).\(^3\)

3. Reality Check. — But does the Domar and Musgrave theory translate from the fanciful world of coin tosses to the complex realities of competitive markets? In order for balance to work, a corporate taxpayer must truly be indifferent between trading in its own stock (taxed at a zero rate)

\[R = PX - (1-P)Y \]

Now assume that a tax, \(T\), is imposed. Taxpayer will make only \(PX(1-T)\) if she wins. But because losses are deductible, she loses correspondingly less: \((1-T)(1-P)Y\). So with the tax, her expected return, \(RT\), is:

\[RT = PX(1-T) - (1-P)(1-T)Y \]

If the taxpayer scales up the investment by \(\frac{1}{1-T}\), the new expected return, \(RST\), is:

\[RST = \frac{PX(1-T)}{1-T} - \frac{(1-P)(1-T)Y}{1-T} = PX - (1-P)Y \]

In other words, \(RST\) turns out to be the same as \(R\).

38. Thus, it is well understood that the analysis does not hold for inframarginal returns. See Warren, Cash Flow Tax, supra note 12, at 5.
and trading in swaps based on its own stock (taxed at a 35% rate). Likewise, an individual taxpayer must be indifferent between life insurance based on a hedge fund’s value (taxed at a zero rate) or a direct investment in the fund (taxed at a 35% rate).

In theory, taxpayers will be indifferent to the tax rate as long as the gain-loss ratio is one and scaling up is costless. If these conditions are met, balance should impose a powerful constraint on tax planning. Admittedly, it is somewhat counterintuitive for taxpayers not to prefer a low tax rate. But skeptics should remember an important rule under current law that enables taxpayers to choose a higher effective tax rate: Under the hedging rules of Treasury Regulation section 1.1221-2, individual taxpayers can expressly opt for ordinary character.39 Since taxpayers are forced to choose their character in advance (on the day they enter into the position), they do not know whether ordinary character will be better (if they will have losses) or worse (if they will have gains). My sense, moreover, is that taxpayers do not try to cherrypick with hedging elections—or, for that matter, with analogous elections that allow taxpayers to choose capital character under the rules for securities dealers and foreign currency. In general, the choice of ordinary character does not reflect a prediction that losses are more likely. Usually, taxpayers are not able to make this prediction with confidence, so market uncertainty represents a potent constraint on tax planning. In a sense, this Article applies a similar approach to derivatives across the board, matching the treatment of gains and losses so market uncertainty becomes a more significant friction.

4. Caveat on Time Value and Wages. — The analysis so far shows why a gain-loss ratio of one can constrain planning. But an important caveat should be emphasized: Although this reform strategy can be effective for risky bets, it is not effective for time-value returns or wages. Because these sources of income are expected to be positive (so market uncertainty is not a factor), and because they cannot be scaled up costlessly, inconsistencies still inspire planning, even if the gain-loss ratio is set at one.

Thus, it is well understood that scaling up cannot cancel out tax on the risk-free return. Taxpayers would have to put up more money, which imposes either interest expense (if they borrow) or opportunity cost (if they put up their own capital). As an illustration of the point, imagine a taxpayer no longer simply tosses the coin and then makes or receives a $100 payment. Instead, the taxpayer makes an upfront payment of $100, earning what is, in effect, $5 of interest income.40 If the taxpayer later wins a coin toss, she receives $110 instead of $100—that is, a gross payment of $210. If she loses, she receives nothing. Assume the taxpayer has a 50% chance of winning. If the tax rate is zero, the expected return is $5 (derived solely from the time value). With a 50% tax rate, in contrast, the

40. Assuming, of course, a 5% interest rate.
expected return falls to $2.50. Scaling up the bet to $200 does not solve
the problem. Although the expected aftertax value increases to $5, the
taxpayer has to put up more capital, and so the yield remains 2.5%.
Thus, taxpayers will prefer a low effective tax rate on time-value returns—and
might engage in planning to attain a low rate—since scaling up cannot undo the effects of a higher tax.

A similar analysis applies to wages. Inconsistencies in the taxation of
human capital do matter because the return is positive and scaling up
wage income is costly; taxpayers presumably have to do more work.41 Balance alone is not enough for wages, since taxpayers still prefer a low rate or deferred timing.

To sum up, balance does not constrain tax planning for wages or
time-value returns. Here, only consistency or symmetry will do the trick. However, balance can constrain tax planning for risky bets—provided that it is easy for taxpayers to scale them up. Given these limitations, commentators often assume that this familiar theory does not have any practical application. But this is not the case. We now turn to an important economic sector—the derivatives market—where these limitations are manageable.

B. “Nonprepaid” Derivatives: Risky Bets That Can Be Scaled Up Cheaply

If reformers set the gain-loss ratio at one, taxpayers will not care
about differences in effective tax rates, but only if two conditions hold.
First, the economic return must derive from risk, as opposed to time
value or wages. Second, the risky bet must be easy to scale up. Typically, these conditions are assumed to be very limiting—so much so that “real
world” investments do not qualify.42 However, this section identifies key
segments of the derivatives markets that do in fact satisfy these twin condi-
tions. As a result, a reform agenda based on balance is especially promis-
ing for these instruments. In other words, even though the Domar and
Musgrave theory has been dismissed as an impossibility, it finds a home in
the sophisticated world of financial engineering.

— As noted above, although the tax on risk can be negated through scal-
ing up, the tax on time value and wages cannot. A potential problem,
though, is that all of these returns can sometimes be found in the same
investment. If these returns are intertwined in this way, taxpayers will pre-
fer a low effective tax rate. If so, inconsistencies could prompt planning,

41. Or choose a different occupation. See Jonathan Eaton & Harvey S. Rosen,
Taxation, Human Capital, and Uncertainty, 70 Am. Econ. Rev. 705, 706 (1980) (arguing
income tax affects human capital investment both by changing the riskiness of human
capital and by influencing an individual's willingness to bear those risks); Sandmo, supra
note 11, at 304 (discussing taxation effects of choosing different occupations).

42. For a summary of difficulties with these assumptions, see Bankman & Griffith,
supra note 12, at 397-98.
since taxpayers cannot scale up their investment to cancel out a high effective tax on the time-value return or wage.

Happily, this problem is much less daunting for an important class of financial instruments: "nonprepaid" derivatives such as swaps, futures, and forward contracts. The reason is that returns on these instruments derive almost entirely from risk, as time-value returns are stripped out (and, in the typical transactions, wages are not relevant). In these nonprepaid instruments, parties bet that a particular asset will outperform (or underperform) the risk-free return.

For instance, instead of buying ABC stock for its current price of $100, the would-be buyer (called the "long") commits to buy it at a specified date in the future, which is assumed here to be two years. The price on the forward contract (the "forward price") is the current price of the underlying property (here $100), increased by an amount based on the risk-free return, which is assumed here to be 3%. The reason for this extra charge is that the long gets the economic return on the underlying property today, but does not have to pay until a year from now; in effect, the long is borrowing the purchase price from the counterparty (called the "short") and must pay interest.\footnote{43} With a forward price of $106.09,\footnote{44} the long makes money if ABC is worth more than this amount after two years, and the short makes money if ABC stock is worth less. In other words, the parties bet whether the underlying property will outperform the risk-free rate. The key point is that the parties to a standard forward contract do not part with the use of any money upon entering into the contract—whether they are long or short—and thus do not earn a return for time value.\footnote{45} The same is essentially true for a standard swap.\footnote{46} As a result, these bets are based on pure risk alone. This feature ensures that taxpayers actually can cancel out the tax by scaling up. Assuming such scaling up is not itself costly,\footnote{47} inconsistencies in the taxation of these nonprepaid instruments should not prompt planning as long as the condition of balance is satisfied for each one.

Of course, not all derivatives share this advantage. Some require upfront or intermediate payments and thus offer time-value returns. This group includes prepaid forwards, contingent debt, and, to an extent, op-

\begin{footnotes}
\item[43] If the underlying property pays a periodic return such as a dividend, the forward price is reduced by the expected value of the dividend. In this example, ABC stock is assumed not to pay a dividend.
\item[44] The value of $100 at 3% annual interest for two years.
\item[45] Of course, if the short hedges by owning the underlying property, she will earn a time-value return on the underlying. The two positions effectively net to a bond. If time-value returns on the underlying are not subject to an imputation system, a special "integration" rule is needed. See infra Part III.C. The closest analogies under current law are the conversion transaction rule of section 1258, I.R.C. § 1258(c) (2004), and the capitalization of interest expense under the straddle rules, id. § 263(g).
\item[46] One difference is that the long on a swap pays the interest charge currently, so this charge does not compound. For a discussion, see infra Part VI.C.
\item[47] See infra Part II.B.2.
\end{footnotes}
tions48 (as well as more conventional financial instruments such as stocks, bonds, and commodities).49 For these instruments, inconsistencies in the treatment of time-value returns can indeed prompt planning, assuming the time-value return is large enough. As a result, these time-value returns will have to be dealt with separately.50

2. \textit{Scaling Up Nonprepaid Derivatives is Cheap.} — As noted above, in order for balance to constrain tax planning, two conditions must hold. First, the return on the relevant investment must derive solely from risk, not from time value or effort. We have seen now that nonprepaid derivatives satisfy this condition. Second, the relevant investments must be easy to scale up. If this condition is met, it generally will be easier for taxpayers to cancel out the tax (by scaling up their bet) than to avoid the tax (by engaging in planning). But how easy is it to scale up an investment? The argument here is that for derivatives, scaling up is relatively easy.

\textit{a. Elastic Supply of Derivatives.} — Presumably because they do not focus on derivatives, commentators often assume scaling up is costly. The concern is easy to see if, instead of a derivative, the risky bet is a factory or trademark. Then the taxpayer cannot simply snap her fingers and build another one. More generally, if taxpayers need to enlarge their risky po-

48 The buyer of an option typically pays a premium and, on average, should expect to earn at least the risk-free rate on this payment. Yet with the typical option, this return should be quite small because the premium is only a fraction of the underlying asset’s value. For example, consider a one-year option to pay $110 for the underlying, which is currently worth $100 and has an average volatility. This option costs about $17.50. If the risk-free rate is 3\%, the annual risk-free return on this premium is about 53\% of its cost, or approximately 0.5\% of the underlying’s value. In contrast, time value is more important in options that require a much larger premium, such as options that have very long terms or are deep in the money.

49 For these purposes, the category of prepaid derivatives should also include situations in which taxpayers replace a nonprepaid derivative that has been unsuccessful (i.e., one that has become “out of the money”) with another nonprepaid derivative that is an even bet (i.e., one that is “at the money”). The reason is that taxpayers must invest money (in effect, a prepayment) to buy their way out of the unsuccessful bet. For example, assume a taxpayer enters into a two-year forward contract to buy ABC for $106.09 (when ABC is trading for $100 and the risk-free rate is 3\%). After one year, assume the price of ABC has fallen to $63. This means the taxpayer can close out the unsuccessful “original” forward by paying $40. The bet here is that ABC will outperform the $63 price of ABC after one year. The taxpayer can replace this original forward with a “replacement” forward to purchase ABC at $64.89 (the current ABC price of $63 increased by 3\%). After another year, assume that the price of ABC rises to $106.09—the forward price on the original forward that the taxpayer has already terminated. If the original forward had not been terminated after one year, it would have yielded no gain or loss. But because it was terminated early, the taxpayer has a net profit of $1.20: The taxpayer earns $41.20 on the replacement forward (the difference between the $64.89 forward price and the $106.09 current price), but the taxpayer has already lost $40 on the original forward, leaving a net gain of $1.20. This $1.20 represents the 3\% (risk-free) return on $40, which is the amount the taxpayer paid for the replacement forward. In effect, the taxpayer has prepaid $40 to get back to an even bet, and this prepayment generates a risk-free return.

50 For suggestions on how to separate time-value returns, see infra Part III.B.
sitions, this increased demand could increase the price of placing risky bets. If so, this steeper cost could prevent taxpayers from completely canceling out the tax.51

Of course, it is difficult to generalize here. Even if we are talking about factories instead of derivatives, there are reasons why these price increases might not occur. For instance, as Louis Kaplow has shown, the government can blunt any price increase by returning its share of risky assets to the private markets.52 Even if the government does not do this explicitly,53 it may do so implicitly by raising taxes or cutting services when the market is down, while cutting taxes or expanding services when the market is up.54

In any event, even if the price of risky investments would otherwise rise, this Article offers a reason why an increase is less likely for derivatives: Unlike the supply of physical assets, which ultimately is finite, the supply of derivatives is theoretically infinite and can vastly exceed the supply of underlying property, a process this Article calls “financial multiplication.”

To enter into a derivative, the principal requirement is a willing counterparty. A long needs to find a short, and vice versa.55 If the tax law affects both parties to the derivative equally—giving them the same incentive to scale up—neither should charge extra for doing so. For example, assume Larry and Sally wish to enter into a cash-settled forward contract based on the value of one share of ABC stock.56 If the government imposes a 50% tax on both of them, they have the same incentive to

\begin{enumerate}
\item Bankman & Griffith, supra note 12, at 398 ("A price increase is plausible because the tax would increase demand for risky assets."). For the sake of simplicity, the term “price increase” is used to describe this phenomenon, but a more general formulation is a decline in the yield.
\item See generally Kaplow, supra note 11.
\item See Weisbach, Risk-Taking, supra note 11, at 22 ("[C]asual observation suggests that the government does not adjust its portfolio."); cf. Kaplow, supra note 11, at 794 ("It does not appear that the government adjusts its portfolio in a conscious manner to offset the effects of taxation or particular tax reforms on investors' risk-taking behavior. Perhaps it should.").
\item To an extent, taxpayers may insure their own portfolios against these fiscal effects. For instance, if they expect tax burdens to be heavier when the market falls—so that they are exposed to market risk in their "public" portfolio—taxpayers may not scale up their "private" portfolio (their personal investments) quite as much. This response obviously tempers any price increase. See Roger H. Gordon, Taxation of Corporate Capital Income: Tax Revenues Versus Tax Distortions, 100 Q.J. Econ. 1, 5–6 (1985) [hereinafter Gordon, Corporate Capital Income].
\item As noted above, a "long" is a bet that the underlying property will appreciate, and thus resembles ownership of the underlying asset. In contrast, a "short" is a bet that the underlying property will depreciate. See supra note 3.
\item Assume ABC is currently trading at $100 and the risk-free rate is 3%. Under a two-year forward contract, if ABC appreciates above $106.09, Larry "wins," and Sally must pay him the difference; but if the stock price is less than $106.09, Larry "loses," and must pay Sally the difference. For instance, if ABC is trading at $206.09, Sally pays Larry $100. But if the stock is trading at $90, Larry must pay Sally $16.09.
\end{enumerate}
double the bet, so neither should demand more favorable terms (such as a higher fee) for doing so.57 At the same time, the government obviously collects no revenue, since any gains to Sally are deductible losses to Larry, and vice versa. In the derivatives market, therefore, scaling up should induce price effects (1) only to the extent that counterparties are subject to different effective tax rates (e.g., because some are foreign or tax-exempt) and, even then, (2) only to the extent these tax-insensitive counterparties are not evenly distributed among shorts and longs.58 Generally, it seems reasonable to assume an even distribution.59

b. \textit{Credit Constraints}. — The elastic supply of derivatives lends support to the idea that taxpayers can scale up these instruments cheaply, a precondition of this Article's reform agenda. Even so, Noël Cunningham has emphasized another potential constraint on scaling up: In order to cancel out the tax, the taxpayer has to borrow at the risk-free rate (so the risk-free return earned on the scaled up investment covers the interest expense).60 In general, wealthy investors, who hold the vast majority of

57 The relevant price here is the price of entering into the derivative, not necessarily the price of the underlying, which could be unaffected by an extra tax on derivative securities.

58 What if the counterparty is a dealer subject to different tax rules, as is typical in the over-the-counter market? Even then, the dealer still may not demand more favorable terms. Assume Larry enters into his contract with Danny, a dealer, instead of with Sally. Although Danny has no tax incentive to scale up if he is not subject to the relevant tax increase, he will still want to scale up if short customers such as Sally also want to scale up. The key assumptions here are that the dealer hedges each long derivative with a short derivative, and that all the dealer's counterparties are equally affected by the tax. These conditions do not hold if the dealer hedges with the underlying. This could happen if more clients want to be long than short, or vice versa.

59 An important assumption so far is that every party already is paired with a counterparty before the relevant tax increase, so there is no need to bid up the price to attract new counterparties. This generally should be true of derivatives transactions, which are zero net supply bets. In contrast, a price increase is more likely in a market with positive net supply (i.e., in which every trader does not already have a counterparty). Instead of derivatives, then, consider the underlying, such as shares of stock. Assume that a firm's total capitalization is 200 shares, and Larry and Lucy each own 100. In response to a new 50\% tax, both want to double their position to 200 shares, so the share price could rise until the one who values the firm more has all 200. Adding derivatives to this market may blunt any price increase in the underlying property, but does not necessarily do so. Sally can keep the price from rising by taking the short side of a derivative with Larry and Lucy (and thus adding 200 "notional" shares to the market), but she may be unwilling to do so. Unlike in the zero net supply case—where Sally already is a short counterparty when the tax is introduced—she is not already short, so there is no necessary reason that she wants to be. The point of this stylized example is that financial multiplication is likely to be less effective at stabilizing the price of risky assets when a tax increase applies to the underlying property, not just to derivatives.

60 Since low-income taxpayers cannot borrow at such a low rate because of their weak credits, Professor Cunningham raises a vertical equity concern: Taxpayers with strong credits are more adept at avoiding tax. See Cunningham, supra note 12, at 37–38. A problem with this argument, however, is that taxpayers with poor credits get something in return for paying higher interest rates: They are more likely to pass on risk of loss to creditors. Id. at 38 n.74.
the risky financial investments, can borrow at low cost, if not at quite the risk-free rate.

This is especially true when they scale up with nonprepaid derivatives such as swaps or forward contracts. As an economic matter, these instruments resemble debt-financed investments, but the implicit interest charge is not much higher than the risk-free rate.\footnote{See, e.g., Roger Lowenstein, When Genius Failed: The Rise and Fall of Long-Term Capital Management 136 (2000) (“Typically, swap rates . . . trade at a slight spread above the interest rate on the country’s government debt.”). For much of the 1990s, swap spreads were less than 35 basis points. In June 2003, the rate on a one-year interest rate swap was only 8 basis points higher than the rate on a one-year Treasury. See Fed. Reserve Stat. Release H.15 (519), Selected Interest Rates (July 7, 2003), available at http://www.federalreserve.gov/releases/h15/20030707/h15.pdf (on file with the Columbia Law Review) (quoting 1.01 as yield on one-year Treasury and 1.09 as yield on one-year interest rate swap). These spreads obviously are more favorable than many other methods of financing. For example, according to the Mortgage Bankers Association of America, the spread between the LIBOR swap rate and mortgage rates generally ranges between 84 and 125 basis points. Letter from Paul S. Reid, Executive Vice President, Mortgage Bankers Association of America, to Timothy S. Lucas, Director of Research and Technical Activities, Financial Accounting Standards Board (Mar. 31, 2000), available at http://www.mbaa.org/resident/lib2000/c_fasb_0331.html (on file with the Columbia Law Review).}

The spread is modest because derivatives are available only to wealthy investors with strong credits.\footnote{For instance, investors must satisfy minimum wealth requirements for over-the-counter derivatives. For a discussion, see Schizer, Frictions as Constraint, supra note 19, at 1328 & n.49.} Also, derivative counterparties receive special protection under the bankruptcy laws.\footnote{Derivative counterparties are entitled to “net” two positions against each other. For example, if a counterparty has two derivatives with a bankrupt person—one with a profit, and the other with a loss—she can withhold payment on the lost bet as security for payment on the profitable bet. Put another way, the bankruptcy trustee is not allowed to cherrypick, honoring only contracts with a profit while avoiding those with a loss. These so-called “netting” agreements have become increasingly common. See Serge Jeanneau, Derivatives Markets, BIS Q. Rev., June 2003, at 31, 39 n.5, available at http://www.bis.org/publ/qr/pdf/r_qr0306.pdf (on file with the Columbia Law Review) (noting that bilateral netting had risen as much as 81% in the fourth quarter of 2002).} Indeed, some of the spread is a fee for the dealer’s services, not compensation for credit risk.

Another credit-related cost is that, in some cases, taxpayers have to pledge collateral such as Treasury securities—though, notably, they pledge considerably less than the full value of the underlying property.\footnote{For example, 24% of exposure on over-the-counter equity derivatives is collateralized. Int’l Swaps & Derivatives Ass’n, ISDA Margin Survey 2003, at 8, available at http://www.isda.org/c_and_a/pdf/ISDA-Margin-Survey-2003.pdf (on file with the Columbia Law Review) [hereinafter ISDA Margin Survey]. It is worth pressing the assumption that taxpayers have to pledge additional collateral when scaling up. This is odd if the reason for scaling up is to cancel out the tax—in effect, to cover the government’s share. In this case, the taxpayer does not undertake a larger (aftertax) bet for herself. If instead the scaled-up position leads to extra losses, the government will bear those extra losses. Since the taxpayer’s personal exposure is not increasing, why might a counterparty want extra collateral? Because tax losses reduce overall tax liability, and the counterparty may have trouble getting a security interest in any tax refund arising from their contract.}
It is important to note that while taxpayers surrender possession of these securities, they do not give up the economic return. As a result, this step is costless for taxpayers who otherwise want to own Treasuries, perhaps as a fixed income investment in their portfolio.\(^{65}\)

Admittedly, credit constraints are not insignificant, even for the creditworthy taxpayers eligible to enter into over-the-counter derivatives. Derivatives dealers monitor the size of the positions outstanding with a given counterparty, and, at some point, they become nervous if those positions become too large. Yet taxpayers should be able to scale up a fair degree—enough to cancel out reasonably significant tax differentials—before this concern becomes serious. In sum, credit constraints should be a relatively minor issue in this high-end market.

c. Regulatory Constraints. — Although credit constraints should not be severe for derivatives, an offsetting factor is that derivatives carry unique regulatory burdens. For example, regulated financial institutions—most notably, derivatives dealers—face costs that increase with the size of their positions. They may face so-called “regulatory capital charges,” which means more equity capital must be committed to the enterprise.\(^{66}\) These charges may pass through to customers.\(^{67}\) To a significant degree, though, derivatives dealers can reduce regulatory capital charges and other regulatory burdens by routing trades through offshore entities. It is not uncommon, for instance, for traders in New York to “book” a trade in London. In short, the regulatory environment is unlikely to impose significant costs upon investors who scale up their derivative hedges.

To sum up, scaling up forwards, futures, swaps, and other “non-prepaid” derivatives should be reasonably cheap—and certainly cheaper than scaling up factories and intellectual property. This claim has two important implications. First, taxpayers who enter into derivative contracts are well positioned to adopt a Domar and Musgrave strategy. Instead of avoiding a tax through planning, they can cancel out their tax by increasing their bet. Second, reforming the tax rules for nonprepaid derivatives is relatively easy. Balance is necessary, but symmetry and consistency are not. Part III outlines key elements of a reform strategy based on balance.

\(^{65}\) While all counterparties accept Treasuries as collateral, an increasingly common practice is to pledge cash instead. See id. at 4–6. Good customers earn a rebate on this cash.

\(^{66}\) A financial institution obviously has market-based reasons to keep its credit strong. To an extent, then, these charges overlap with the credit constraints discussed above. Yet in some cases, the relevant regulatory regimes do not accurately measure credit risk. According to the ISDA, “if the New Basel Accord attains its objective of reducing if not eliminating inconsistencies between economic and regulatory capital, the regulatory motivation will fall in importance.” Id. at 10.

\(^{67}\) Position limits are another such constraint. For a discussion, see Schizer, Frictions as Constraint, supra note 19, at 1353 n.140.
This Article proposes a three-pronged reform strategy for derivatives. First, policymakers should ensure that the treatment of risky bets is balanced so that for each derivative, the timing and character of gains must match the timing and character of losses. To be clear, inconsistencies in the taxation of risk will remain, but, as noted above, taxpayers will have much less of an incentive to game them. They will be forced to choose a high or low effective tax rate before knowing whether they have gain or loss, and their ability to scale up their derivatives will significantly reduce the impact of the tax. Second, since this reform strategy works only for risk-based returns, policymakers must wall off the tax rules for time-value returns and wages and tax them consistently with separate rules. Third, in some cases, special rules are needed to coordinate the treatment of derivatives with the taxation of other economically related investments. For example, we still need the hedging rules of current law. These rules coordinate the tax on an active business, on one hand, with the tax on derivatives that hedge aspects of this business, on the other.

A. Setting the Gain-Loss Ratio at One: A Survey of Key Issues

The first prong of the reform agenda is to set the gain-loss ratio at one for all derivatives so that taxpayers will have little incentive to game inconsistencies. Policymakers must equate the tax rates for gains and losses, eliminate problems of timing, and prevent ex post reclassification of tax treatment of risky bets.

1. Character and Rates. — The first step in achieving balance is to equate the nominal tax rates for gains and losses. Obviously, the same rate must apply to gains and losses from the same instrument. Thus, if gains would be capital in character, losses must also be capital.

In addition to character, the rate structure is also important. Specifically, flat rates must govern risk-based returns because progressive rates push the gain-loss ratio above one. As Alvin Warren has shown, gains can shift taxpayers into a higher bracket (increasing the government's share), while losses can shift taxpayers into a lower bracket (reducing the government's share).
Similarly, the nonrefundable nature of our system can also push the gain-loss ratio above one. Taxpayers with incomes just above the zero bracket level pay tax on gains without securing a meaningful deduction for losses. While low-income taxpayers might seem to be most at risk here, since a smaller loss shifts them into the zero bracket, these taxpayers are not active investors—and certainly do not invest in the derivatives market. Their main investment, residential real property, already is taxed at a zero rate. In any event, allowing losses to carryover to other years is a familiar way to mitigate the issue.

2. Timing. — In addition to unbalanced character rules and tax rates, timing rules can cause the gain-loss ratio to diverge from one. Perhaps the most important imbalance is the so-called “timing option.” Under the realization rule, taxpayers control the timing of their tax. By keeping appreciated investments, they can defer gains (thereby reducing the present value of the tax). By selling depreciated property, they can accelerate losses (thereby preserving the present value of deductions). The essential point is that administratively cheap and nondistortive solutions to the timing option are extremely valuable.

Yet the problem can be challenging, especially for derivatives. There is empirical evidence that taxpayers who use derivatives make particularly effective use of the timing option. As Alan Auerbach, Leonard Burman, and Jonathan Siegel have shown, a growing core of wealthy taxpayers are able to zero out all their capital gains; indeed, taxpayers who engage in derivatives transactions are more than twice as likely to shelter all their capital gain. For strategic traders, derivatives offer unique advantages. Holders of derivatives can claim a loss without even having to find a buyer for the depreciated investment. Instead, they can simply settle up with

70. A system is “nonrefundable” if taxpayers who have net losses in a given year pay zero tax instead of a negative tax—that is, they do not receive a check from the government covering a portion of these net losses. Put another way, in a nonrefundable system, deductions can only shelter income, but cannot give rise to additional relief from the government.

71. High income taxpayers are less likely to face this problem if they can deduct investment losses from their (high) salaries. For investments that are capital in character, this is generally not permissible now, given the capital loss limitations. But if the timing option is addressed in other ways, rendering the capital loss limitations unnecessary, this problem should be uncommon for high-income taxpayers. For a discussion of three alternatives to the capital loss limitations, see infra Part IV.D.

72. Carryovers are especially effective if they grow at an appropriate rate of interest to compensate the taxpayer for deferring the loss.

73. Under the realization rule, taxes on appreciated property and deductions on depreciated property are not triggered until the property is sold.

their counterparty in a “cash settlement.” To defer gain, the taxpayer can simply keep the derivative or, if it is an option or forward contract, accept delivery in a “physical settlement.”

Of course, the tax system has some constraints on the timing option that tend to push the gain-loss ratio back up toward one, and possibly higher. The most important, the capital loss limitation, prevents taxpayers from deducting losses except to the extent that they recognize gains. Yet this constraint’s effectiveness depends upon the taxpayer’s entire portfolio. A low-income taxpayer with relatively few investments is less likely to have gain, but these taxpayers do not use derivatives. The core derivatives clientele, sophisticated high-income taxpayers, are much more likely to have gain they otherwise want to recognize, including hedge fund investments that throw off short-term capital gain or large appreciated positions in firms they have founded. Given these gains, the capital loss limitations have no effect on the timing option inherent in other positions.

The system has other constraints on the timing option as well. One that is featured prominently in this Article is the wash sale regime of section 1091, which defers a loss if the taxpayer immediately replaces the depreciated investment. Although section 1091 sometimes represents a

75. For example, assume a taxpayer has entered into a contract to purchase stock, which is currently trading at $100, for $110.25 in two years. If the stock price has declined to $60, she can terminate the contract early by making a cash payment to her counterparty of approximately $50, thereby triggering a loss under current law. David Garlock observes that, in accelerating the loss, the taxpayer pays a smaller nominal amount (since the taxpayer is rewarded for paying early). Since the taxpayer’s deduction becomes smaller in this way, at least in nominal terms, Garlock argues that strategic trading with derivatives is unattractive. But he concedes that this analysis does not hold if, in discounting the size of the termination payment, the parties use a pretax (as opposed to an aftertax) yield. See David C. Garlock, The Proposed Notional Principal Contract Regulations: What’s Fixed? What’s Still Broken?, 102 Tax Notes 1515, 1529–30 (2004). In any event, Garlock’s claim clearly does not hold up in the case of two offsetting positions (a “straddle”). If the loser is settled on December 31, and the winner is settled on January 1, the ability to accelerate the loss to an earlier year obviously is valuable to the taxpayer—and thus shows the power of the timing option here—even if an aftertax yield is used to discount the termination payment.

76. If the stock price has increased to $200, she can defer her gain by accepting physical delivery of the stock. In this case, her basis in the stock is $110.25, and she pays no tax on the appreciation until she sells the stock.

77. I.R.C. § 1211 (2004). Individuals can deduct only $3,000 of capital loss per year against ordinary income.

78. Indeed, the commodities laws prevent them from entering into over-the-counter derivatives. For a discussion, see supra notes 19, 62 and accompanying text.

79. These include the passive loss rules, I.R.C. § 469, and the straddle rules, id. § 1092. Perhaps most importantly, corporations cannot deduct net losses. Id. § 382. For an empirical study of the effects of this rule, see Rosanne Altshuler & Alan J. Auerbach, The Significance of Tax Law Asymmetries: An Empirical Investigation, 105 Q.J. Econ. 61 (1990). This problem looms especially large for undiversified corporations such as high-tech startups. See Joseph Bankman, The Structure of Silicon Valley Start-ups, 41 UCLA L. Rev. 1737, 1737–39 (1994).
genuine constraint on retail investors, the sophisticated taxpayers who use derivatives often find the rule easy to circumvent. In response, the final Part of this Article outlines ways to make the wash sale regime more effective.

3. *Ex Post Reclassification.* — A further problem with setting the gain-loss ratio at one is that, even if taxpayers are indifferent between a high and low effective tax rate at the moment they place their bet, this indifference will melt away as soon as they know how the bet has fared. For example, assume swaps are taxed at a high rate, while forward contracts are taxed at a zero rate. A taxpayer with a successful (high-tax) swap will have every incentive to pretend it really was a (low-tax) forward contract. This is true even if the taxpayer had scaled up (e.g., because she intended the position to be a high-tax swap). After all, she will still want to keep all the gains for herself.

Correspondingly, a taxpayer with an unsuccessful (low-tax) forward contract will have every incentive to pretend that it really was a (high-tax) swap (so the deduction for losses is more valuable). Again, this is true even if the taxpayer had reduced the size of her bet (e.g., because she intended the position to be a forward that was taxed at a zero rate). Once she knows the bet has been unsuccessful, any taxpayer would prefer to transfer her losses to the government instead of bearing them all herself.

The lesson here is that inconsistencies in the taxation of risky bets do not prompt planning as long as taxpayers precommit to their treatment. In other words, we need clear lines defining the kind of bet subject to each sort of rule. In our example, a forward contract must be clearly distinguishable from a swap. These lines need to be clear enough, or they will prove a focal point for residual planning.

At first blush, this may seem to be a daunting problem, given the economic similarity of various derivatives. But the problem should not be insoluble. In fact, current law already deals with this sort of line-drawing problem (since current law already treats these instruments inconsistently). Relatively formal conventions are used. For example, the line between a forward contract and a swap, under current law, is that swaps provide for at least one periodic payment every year. While my sense is that these classificatory lines are relatively clear already and, thus, are hard to game ex post, it is possible to clarify them further. As an added backup, policymakers can adopt an identification system like the one used for the hedging rules and other similar elections; in other words, taxpayers can be required to identify in advance how they are treating an investment for tax purposes.

To sum up, setting the gain-loss ratio at one is no easy task. Policy-makers have to enforce a flat rate structure, police the timing option, and prevent ex post reclassification. This Article offers concrete guidance about how to achieve these goals. But before doing so, it is important to flesh out the rest of the reform agenda. In addition to setting the gain-loss ratio at one, what else do policymakers have to do?

B. Consistent Treatment of Time-Value Returns and Wages

While the first goal is to set the gain-loss ratio at one for risky bets, this strategy is not sufficient for time-value returns and wages, as noted above. As a result, time value and wages must be taxed separately with consistent rules. Taxpayers must not be allowed to disguise interest or wages as risk-based returns, and vice versa.

1. Time-Value Returns. — It is well understood that taxpayers prefer a low effective tax rate on time-value returns, and might engage in planning to attain it. As noted above, nonprepaid derivatives generally do not offer time-value returns. Yet prepaid derivatives—investments on which the taxpayer must commit their capital—do indeed offer such returns. Prepaid forwards and contingent bonds are the most important examples, while options also offer time-value returns (in exchange for option premiums). Even with these prepaid derivatives, the incentive to plan depends on the size of the time-value return. If it is sufficiently modest, such tax planning may not be worth the trouble.

Yet if time-value returns are robust enough, they need to be taxed consistently under separate rules. Such an imputation regime can take various forms. It can resemble the original issue discount rules, so that a taxpayer’s basis grows each year by a prescribed interest rate. Alternatively, an interest charge can be imposed at realization. Under this “ret-

82. In some cases, swaps offer time-value returns as well. See infra Part VI.D. As noted above, a taxpayer also earns a time-value return in replacing a nonprepaid derivative that has been unsuccessful (i.e., on that has gone out of the money) with one that is an even bet (i.e., one that is at the money), since the taxpayer must make a payment to upgrade in this way. See supra note 49.
83. The risk-free return has been modest in the last century but has risen substantially in recent years. According to Bankman & Griffith, the risk-free return averaged 0.5% between 1926 and 1989. See Bankman & Griffith, supra note 12, at 387. In contrast, the annual yield on 10-year inflation-adjusted U.S. Treasury securities was 2.06% on July 25, 2003, and 2.73% a year earlier. Dow Hits a Five-Week High on Strong Economic Reports, N.Y. Times, July 26, 2003, at C4. More recent studies suggest, moreover, that the expected risk-free return was higher in early years, but turned out to be unexpectedly low because of unanticipated inflation. See Jeremy J. Siegel, The Shrinking Equity Premium: Historical Facts and Future Forecasts, 26 J. Portfolio Mgmt. 10, 10–12 (1999).
84. For example, assume a taxpayer bets $100 in the coin toss example in Part II.A. The taxpayer is treated as earning $5 of interest income in the first year. If she wins the bet, she gets an additional $105 of risk-based return; if she loses, her risk-based loss is $105.
rospective" approach, sale proceeds can be treated as having accrued at a specified rate. These various imputation regimes pose a range of challenging administrability and political problems. For example, what is the right rate of assumed growth? If the rate is not accurate, what incentive effects does the inaccuracy have? Is the tax due at a time when taxpayers are liquid? Although difficult, these problems are familiar in the literature, and thus are not analyzed here. For purposes of this Article, it is sufficient to note that time-value returns represent a complication in any reform effort that offers balance but not consistency.

2. Wages. — Just as consistency is needed for time-value returns, it also is needed for wages. As a result, this reform agenda needs to exclude equity compensation, as well as wages that are disguised as risky bets. While the treatment of human capital is beyond this Article's scope, it is worth noting that there are administrable ways for the system to distinguish returns to risk from returns to effort. For instance, section 83 already contains a distinction between exchanges of property for services and other bets. Likewise, the swap rules under current law exclude bets relating to events or information that are under the taxpayer's control.

85. This "retrospective" approach, developed in some detail by Alan Auerbach and David Bradford, has two advantages: It does not promote lock-in as assets appreciate, and it does not require potentially illiquid taxpayers to pay tax prior to realization. See generally Auerbach, supra note 7 (proposing the "retrospective" approach); Bradford, Fixing Realization Accounting, supra note 9 (confirming Auerbach's findings and proposing a more generalized alternative). As Michael Knoll has shown, however, this approach gives taxpayers the incentive to shift income to assets with shorter holding periods (and, in some cases, to wages). See Michael S. Knoll, Tax Planning, Effective Marginal Tax Rates, and the Structure of the Income Tax, 54 Tax L. Rev. 555, 569-78 (2001) [hereinafter Knoll, Tax Planning].

86. See, e.g., Auerbach, supra note 7, at 176-77 (discussing limitations of retrospective taxation); Bradford, Fixing Realization Accounting, supra note 9, at 777-78 (discussing problems caused by inflation); Knoll, Tax Planning, supra note 85, at 569-78 (explaining how a simple retrospective income tax system does not eliminate tax planning); Shuldiner, General Approach, supra note 1, at 273-74 (discussing many shortcomings of section 163(d)). I have written elsewhere about the mechanics of imputation for prepaid forwards and options. See N.Y. State Bar Ass'n Tax Section, Timing and Character Rules for Prepaid Forwards and Options, 91 Tax Notes 815, 816-18 (2001), available at http://www.nysba.org/Content/ContentGroups/Section_Information1/Tax_Section_Reports/990report.pdf (on file with the Columbia Law Review).

87. Relatedly, it may become more important to index the tax system for inflation, but this topic is beyond this Article's scope. See Cunningham, supra note 12, at 41.

88. If the effective tax rate for risk is substantially lower than that for wages, taxpayers generally should not be allowed to elect risk-based treatment for their compensation. This would require changes in section 83(b), which currently allows taxpayers to pay tax on compensatory property at ordinary rates and to earn capital gain or loss on subsequent returns. See I.R.C. § 83(b) (2004). As I have written elsewhere, a common planning strategy is to undervalue the property they receive, thereby transforming ordinary income into capital gain. See generally Ronald J. Gilson & David M. Schizer, Understanding Venture Capital Structure: A Tax Explanation for Convertible Preferred Stock, 116 Harv. L. Rev. 874, 901 (2003).

89. See Treas. Reg. § 1.446-3(c)(4)(ii) (as amended in 1994); cf. David F. Bradford, Blueprints for Basic Tax Reform 117 (1984) (distinguishing between financial and
C. Hedging and Other Integration Rules

This reform proposal focuses on the tax treatment of derivatives themselves. Yet if the agenda is not applied to the rest of the economy, additional rules are needed when a derivative is economically linked to some other position. Business hedging is an important example. For instance, assume a jeweler wishes to hedge her exposure to gold by entering into a derivative. This step is socially valuable in transferring a risk (fluctuations in the price of gold) to the economic actor best suited to bear it (e.g., a speculator, instead of the jeweler). But if the derivative and the underlying business are subject to different timing and character rules, it is more difficult for the jeweler to construct the perfect hedge.

In response, current law offers a hedging regime that allows the jeweler to treat income and loss from the derivative as if they were earned in her active business. This regime should be retained.

In other cases, the economic interaction between the derivative and some other position will be tax-motivated. For example, taxpayers might use a derivative to simulate the sale of the underlying without realizing gain (or loss). Under current law, this step could trigger a constructive sale of the underlying. Similarly, a taxpayer might purchase property and simultaneously enter into a forward contract to sell it so that the nonfinancial business assets because "it is sometimes difficult to distinguish between the profits and wages of individual businessmen").

90. To see the point, assume the business is taxed at a 50% rate while the derivatives are taxed at a zero rate (as discussed infra Part IV.D). Assume also that a jeweler keeps an inventory of gold worth $10,000. If the price of gold is stable, the business yields $4,000, taxable at 50%. But this profit suffers as the price of gold declines. If the inventory depreciates more than $4,000, the taxpayer has a net loss in the active business. A crucial assumption here is that this net business loss is not deductible. Without a hedge, then, the taxpayer bears 50% of the first $4,000 of inventory loss, since the government bears the other 50% in the form of lost tax revenue. Yet the taxpayer bears 100% of declines beyond this point, since net losses are nondeductible. It is impossible for a static hedge to cover both potential losses. To hedge the first $4,000 of losses, the derivative should yield 50% (nontaxable) for every dollar of inventory loss. But once the inventory declines by more than $4,000, this hedge needs to be twice as large. Otherwise, if the inventory declines by $8,000, for example, the taxpayer has a $6,000 aftertax loss on the business and only $4,000 of (nontaxable) gain on the hedge.

91. See Treas. Reg. § 1.1221-2 (as amended in 2002). Then the taxpayer can scale up the derivative so that, for every dollar of pretax loss (or gain) in the business, the derivative yields a pretax dollar of gain (or loss). Thus, if the inventory declines by $6,000, the derivative pays $6,000 (which is taxable at 50%), leaving the firm's taxable income at $4,000.

93. See I.R.C. § 1259. For a discussion, see Schizer, Frictions as Constraint, supra note 19, at 1340-59 (arguing that external economic "frictions" limit taxpayers' ability to game the constructive sale rules).
combined positions are economically equivalent to a bond, and current law thus treats profits as ordinary income. These strategies involving the underlying remain viable even if the reform agenda is applied to derivatives, so effective responses are still needed.

IV. NORMATIVE ASSESSMENT: ADVANTAGES OF THE AGENDA FOR REFORM

Part III has offered an incremental reform strategy for derivatives: Policymakers should ensure balance in the taxation of risk-based returns while taxing time-value returns and wages consistently with separate rules. This Part considers the advantages of this reform agenda, while Part V considers the disadvantages.

A. Risk-Taking Is Not Discouraged

A familiar advantage of setting the gain-loss ratio at one, instead of higher, is that risk-taking is not discouraged. Indeed, this was the motivation for Professor Domar and Professor Musgrave’s analysis. Responding to the popular notion that tax discourages risk-taking, they showed that this was not the case—and, indeed, that the opposite might well be true—if losses were fully deductible. Nurturing the willingness of taxpayers to take risks is especially important when risky ventures yield positive externalities, as is the case with research and development, entrepreneurship, and financial arbitrage that makes market prices more accurate. Also, if risk-taking is particularly tax-sensitive, as some evidence suggests, it is likely to be more efficient to tax other sources of revenue.

94. See I.R.C. § 1258.
95. The details of such responses are beyond the scope of this Article.
96. See supra note 11 and accompanying text.
97. As Atkinson & Stiglitz note:
 Even in advanced economies, . . . the rate at which new products and new techniques are developed still depends crucially on the taking of risks and the availability of finance for risky ventures. This has led in turn to concern that the tax system may discourage risk-taking and the supply of funds to finance it. Atkinson & Stiglitz, supra note 11, at 97; see also, e.g., Roger H. Gordon, Can High Personal Tax Rates Encourage Entrepreneurial Activity?, 45 IMF Staff Papers 49, 49 (1998), available at http://www.imf.org/external/pubs/ft/staffp/1998/03-98/pdf/gordon.pdf (on file with the Columbia Law Review) [hereinafter Gordon, High Personal Tax Rates] (“Entrepreneurial activity is commonly viewed to be a key ingredient generating economic growth.”).
98. Arbitrage can improve the accuracy of market prices and thus the allocation of resources, but various market imperfections, such as liquidity constraints, the presence of noise traders, or various regulatory limitations, can discourage traders from engaging in arbitrage. See generally Andrei Shleifer & Robert W. Vishny, The Limits of Arbitrage, 52 J. Fin. 35 (1997) (explaining why arbitrage is not always effective in achieving market efficiency). For a survey of the theoretical and empirical literature on this point, see Michael R. Powers, David M. Schizer & Martin Shubik, Market Bubbles and Wasteful Avoidance: Tax and Regulatory Constraints on Short Sales, 57 Tax L. Rev. 233, 235–42 (2004).
99. A number of studies have shown that entrepreneurship is tax-sensitive. See, e.g., Robert Carroll et al., Entrepreneurs, Income Taxes, and Investment, in Does Atlas Shrug?
B. Inconsistency Without Planning

Even so, the principal motivation for this proposal is not to encourage risk-taking, but to give policymakers flexibility in taxing derivatives. Although current law is riddled with both inconsistencies and imbalances, Part II has shown that policymakers do not have to worry as much about inconsistencies once they remedy imbalances. As David Bradford has emphasized, taxpayers will forgo tax-motivated restructuring if scaling up is cheaper.\(^{100}\) In short, balance can eliminate tax planning without having to eliminate inconsistency.

C. Freedom to Focus on Administrability

Although balance alone can eliminate planning through derivatives, why not target inconsistencies as well? Political constraints are one reason, as noted above,\(^ {101}\) but there is a more satisfying one as well: This incremental strategy is more administrable in two senses. First, our policymaking institutions normally proceed in small steps. Statutory and regulatory projects typically focus on a particular derivative, rather than on all possible ways of placing a given bet. One project deals with the character of swaps, another with the scope of section 1032. If we wait for a single bold stroke to reform the taxation of all derivatives—and, indeed, all financial instruments—we will wait a long time.

To an extent, this is an argument for incremental application, rather than for tolerating inconsistencies over the long term. This brings us to the second administrability justification: A solution that is administrable for one type of derivative may not be administrable for another. For example, it is a familiar point that mark-to-market accounting is easier for publicly traded investments than for private ones. Consistency creates a

\(^{100}\) See Bradford, Fixing Realization Accounting, supra note 9, at 736.

\(^{101}\) See supra Part I.
"lowest common denominator" problem. We can choose only from the (possibly inelegant) subset of rules that can be applied across the board. In contrast, the reform agenda in this Article facilitates context-specific choices. Policymakers have to set the gain-loss ratio at one across the board, but they do not have to do it the same way each time. In some cases, surgical and wholly effective solutions will ensure a gain-loss match without overbreadth or heavy administrative costs. In other cases, blunter methods will be needed, but their scope can be limited to contexts in which they are absolutely necessary.

While the reform strategy described here presents opportunities for creative administration, it is important to emphasize that administrative challenges remain. Three are worth emphasizing. First, taxpayers always want to shift losses to the government while keeping their gains, so policymakers have to police the gain-loss ratio. Second, if the gain-loss ratio is lower in some sectors of the economy than in others (e.g., in private businesses as opposed to publicly traded ones), taxpayers might exploit these "sectoral inconsistencies," as they are called here. Third, if risk is taxed at a low effective rate, the line between risk and other sources of return (such as wages and time value) has to be monitored with care.

D. An Illustration of this Agenda's Flexibility: Three Alternative Approaches for Derivatives

To illustrate the range of options open to policymakers, this Part describes three different approaches for taxing derivative securities. Each has the necessary features to keep the gain-loss ratio at one: finely tailored constraints on the timing option, a flat rate structure for risk, and (if necessary) separate treatment of time-value returns and wages. What is striking, though, is how very different they are. Notwithstanding these differences, it should be possible to apply one or the other in different contexts—even to very similar transactions—without prompting planning.

Policymakers thus have the luxury of choosing the most administrable rule for each situation. To illuminate the strengths and weaknesses of each alternative, three questions are considered. First, how effectively does the regime eliminate the timing option and related planning? Second, how much pressure does the regime impose on the distinction between risk, on one hand, and wages and time-value returns, on the other? Third, how difficult is it for taxpayers to comply with the rule and for the government to monitor compliance?

1. Mark-to-Market Accounting for Derivatives. — The best way to cure the timing option for derivatives—and, more generally, to set the gain-loss ratio at one—is to mark these securities to market. Since there is an
extensive literature on mark-to-market accounting, the discussion here is brief and focuses on points that other commentators have not made.

a. Eliminating the Timing Option and Related Planning. — Under mark-to-market, positions are valued at the beginning and end of the year, and the difference is taxable gain or deductible loss. As a result, taxpayers no longer have a timing option because they do not control the timing of their tax. They are not locked in to appreciated derivative positions and have no tax incentive to sell depreciated positions. Likewise, the wash sale and straddle rules generally are not necessary if all the relevant positions are marked to market. The capital loss limitations also are not needed.

A common objection to mark-to-market accounting is that if it applies to only a subset of positions, taxpayers will gravitate to substitutes that are taxed under realization. For instance, Professor Weisbach has proposed a lower tax rate for mark-to-market positions to offset this effect. Yet an important contribution of this Article is to show why a lower tax rate is not needed, and, more generally, why taxpayers will not necessarily avoid mark-to-market. First, given the generous treatment of losses under mark-to-market, taxpayers will not shy away (as long as the gain-loss ratio for other investments is one). Indeed, if the ratio for these other investments is above one, mark-to-market—and the gain-loss ratio of one—will seem favorable. A second (and related) reason is that rather than avoiding derivatives, taxpayers may instead scale up their positions to cancel out the extra tax burden from marking to market.

Another virtue of mark-to-market accounting is that it provides symmetry in timing rules for over-the-counter derivative transactions, though not necessarily symmetry in rates. Both derivatives dealers (under current law) and their clients (under this proposal) would mark derivatives to market. As noted above, symmetry itself can constrain certain types of tax planning.

105. See sources cited supra note 6.
106. A mixed straddle regime will still be needed, though, when a position subject to realization accounting is offset by a position that is marked to market. Similarly, special rules may be needed when a taxpayer sells the underlying at a loss on November 1 and immediately invests in a derivative (that is marked to market) to recognize a loss at the end of the year.
107. If derivative profits are taxed at the same rate as other income, a dollar-for-dollar deduction is appropriate; otherwise, a credit could be awarded, equaling the loss times the tax rate on derivative profits. See Warren, Capital Losses, supra note 69, at 316–25.
109. Weisbach, Partial Mark-to-Market, supra note 6, at 100.
110. Of course, if the gain-loss ratio is less than one for other investments, mark-to-market will admittedly be unattractive. But in this scenario, Professor Weisbach's solution does not help. His proposal reduces the rate but not the gain-loss ratio (which remains at one as long as the reduced rate applies to losses as well as to gains).
111. See supra Part I.B.
b. Pressure on the Boundary with Wages and Time-Value Returns. — Perhaps the most significant advantage of mark-to-market accounting is that separate rules are less necessary for time-value returns and wages. In general, the accelerated timing under mark-to-market accounting should approximate the taxation of wages and interest. To prevent taxpayers from gaming this line, it is necessary to apply the same tax rate to derivatives as would apply to these sources of income. Of course, the rate for wages and interest is likely to be progressive, while the rate for derivatives should not be (in order to keep the gain-loss ratio at one). To align the two, the rate for derivatives should be the taxpayer’s marginal rate computed without regard to derivative gains and losses; the return on derivatives must be excluded so that it does not shift the taxpayer’s bracket (leading to a gain-loss ratio greater than one).

It is worth pausing to emphasize an irony here. An important reason to use mark-to-market accounting for derivatives is not so much to tax derivatives themselves but, rather, to be sure that we continue to tax something else. Specifically, we need to tax wages and time-value returns, and we want to be sure taxpayers cannot escape this tax by, in effect, disguising wages and time-value returns as risk-based returns on derivatives.

c. Compliance and Monitoring Burdens. — Notwithstanding these significant advantages of mark-to-market accounting, a common objection is that valuing positions periodically is administratively costly, and the government may be hard-pressed to monitor self-serving valuations. In addition, taxpayers may not be liquid enough to pay tax before selling the investment. For a forward contract to sell a house or stock in a private firm, these familiar objections have considerable force.

These objections are much weaker, however, for derivatives based on publicly traded assets, which are the kind most commonly used in tax planning. Some of these derivatives are themselves publicly traded, so

112. These two regimes are probably close enough, although the match is not perfect. Cf. Joseph Bankman & William A. Klein, Accurate Taxation of Long-Term Debt: Taking into Account the Term Structure of Interest, 44 Tax L. Rev. 335 (1989) (noting that the taxation of interest income under current law is not perfectly accurate, in light of the term structure of interest rates); Theodore S. Sims, Long-Term Debt, the Term Structure of Interest and the Case for Accrual Taxation, 47 Tax L. Rev. 313 (1992) (responding to Bankman and Klein).

113. Even with mark-to-market accounting, though, it can still be important to distinguish interest from other income for certain purposes, including foreign tax credits, section 956, and the like. In response, interest can be imputed separately each year, and the rest of the economic return can be marked to market. The government has proposed this sort of approach when dealers mark debt securities to market, see Prop. Treas. Reg. § 1.475(a)-1, 60 Fed. Reg. 397, 402-04 (Jan. 4, 1995), and when taxpayers elect mark-to-market treatment for notional principal contracts with contingent nonperiodic payments, see Prop. Treas. Reg. § 1.446-3(i), 69 Fed. Reg. 8886, 8897-98 (Feb. 26, 2004). If it is necessary to defend these distinctions between interest and other income, such a hybrid approach is needed, though it obviously adds computational complexity to the system.
price quotes are readily obtainable.114 Most other derivatives are acquired from a securities dealer, which already is marking its positions to market under current law.115 The dealer could be required to share its valuation with counterparties. As a further backstop for corporate taxpayers, the financial accounting rules require them to mark certain derivatives to market for GAAP purposes.116 Finally, users of derivatives have strong credits, and thus are less susceptible to liquidity constraints.

This Article recommends, therefore, that policymakers make as much use as possible of mark-to-market accounting for derivatives. Even so, other regimes will be needed when valuation is particularly difficult. Two alternatives are discussed below.

2. Stated-Term Approach. — A second method of eliminating the timing option for derivatives is for taxpayers to precommit to a date on which they will recognize their gains and losses.117 David Bradford has offered a similar proposal,118 which he intended to apply to all financial assets, and the contribution here is to show that this approach works particularly well for derivatives.

a. Eliminating the Timing Option and Related Planning. — Under this proposal, gains and losses are deferred to the scheduled maturity date of the derivative, even if the parties terminate the derivative ahead of schedule. For example, if a swap is scheduled to mature in five years, all tax consequences—whether they are inclusions or deductions—are irrevocably deferred for five years.

A long deferral period is desirable for gains but not losses, and taxpayers have to choose before knowing which they have. As a result, the timing option is gone. Capital loss limitations,119 the wash sale rules,120 and the straddle rules121 generally are unnecessary. Taxpayers also will

114. Indeed, some of these already are marked to market. See I.R.C. § 1256 (2004).
115. See id. § 475.
116. Note that these arguments hold even for derivatives based on property that is not publicly traded, although such derivatives are much less common.
117. In a sense, this approach resembles mark-to-market, except that valuation occurs only once and taxpayers get to choose how long to wait before it occurs. I am indebted to Ted Sims for this observation.
118. See Bradford, Fixing Realization Accounting, supra note 9, at 770–71 (proposing a fixed gain reference date, which would predetermine the tax treatment of gains and losses).
119. This is not to say that derivative losses should be fully deductible against ordinary income. Rather, we need to account for differences, if any, in tax rates. As with mark-to-market, a credit should be allowed equal to the product of the loss and the tax rate applicable to profits.
120. For instance, assume that a taxpayer loses $1,000 on a three-year contract that expires on March 1, 2008. Under the stated-term approach, the loss is recognized in 2008, even if she terminates the contract on March 2, 2005. This loss should be deductible even if the taxpayer enters into a substantially identical contract within thirty days of the termination (March 2, 2005) or on the recognition date (March 1, 2008).
121. As noted above, the traditional straddle strategy is to enter into two offsetting positions, terminating the loser on December 31 while terminating the winner on January 1. See supra note 75. This strategy no longer works if both legs of the transaction are
not be able to take advantage of rate changes by terminating early (before the rate on profits increases), since the relevant tax rate is the one in force in the year the contract was originally scheduled to mature, not in the year it actually terminates.

Even though different positions (and taxpayers) are subject to different effective tax rates (depending upon the term of the derivative), taxpayers can adjust the size of the derivative to compensate for this effect. For similar reasons, if some derivatives are subject to mark-to-market accounting, while others are subject to the stated-term approach, taxpayers should not have a tax-based preference for one regime over another.

b. Pressure on the Boundary with Wages and Time-Value Returns. — Another administrability challenge, as noted above, is to keep taxpayers from stuffing wages and time-value returns into derivatives. In response, as with mark-to-market, the stated-term approach should use the rate that would otherwise apply to the taxpayer's wages and time-value returns (and, to keep the rate structure flat for derivatives, the rate should be computed without regard to gains and losses on derivatives).

But there is a further problem here that does not arise with mark-to-market. If the stated-term approach allows taxpayers to choose very long deferral (e.g., fifty years), the effective tax rate becomes very low. In this case, the "stuffing" problem endures. To mitigate it, deferral can be limited to a fixed term, such as five years with mark-to-market required in the sixth year and thereafter. Likewise, an interest factor can be applied so that as the term becomes longer, the nominal amount of gains or losses grows.

c. Compliance and Monitoring Burdens. — In one important way, the stated-term approach is easier to administer than mark-to-market accounting, while in other ways it is harder. The important advantage over mark-to-market, obviously, is that this approach does not require annual valuations or tax payments prior to realization.

d. Long-term Deferral. — To further mitigate the stuffing problem, interest on gains and losses can be applied so that as the term becomes longer, the effective tax rate increases. This may be required even in the absence of a long-term deferral problem, since the interest rate can be used to make the overall effective tax rate comparable to the implicit tax rate on long-term capital gains.

122. One problem with this approach is that if a flat rate structure is used to keep the gain-loss ratio at one, taxpayers will have to believe this flat rate structure will remain in force until their derivatives mature. This problem can be solved by using the rate structure in force on the date when the parties enter into the contract—not when the contract matures—but then a record must be kept of this rate.

123. Since any given contract has one scheduled termination date, the same date (and thus the same stated term) applies to both parties to that particular contract. This may give readers the impression that the regime proposed here is a symmetrical one, but I do not mean to say that it has to be. For instance, it may be that only one of the parties is subject to the stated-term approach, while the other is on mark-to-market accounting.

124. Since it may be hard to set the interest factor at exactly the right level, this remedy should be imperfect. But since the interest charge could prove to be either too high or too low, it adds an element of uncertainty about whether a long term ultimately will prove to be tax reducing.
However, the stated-term approach is more difficult to administer than mark-to-market in four ways, some of which are more daunting than others. First, taxpayers must designate a recognition date in advance. This is not hard for derivatives, though, because a term must be set for these contracts anyway. Indeed, the fact that derivatives terminate by a particular date has an important advantage: By definition, the transaction has to be over by the time taxpayers recognize gain or loss. As a result, derivatives avoid a problem that burdens Professor Bradford's analogous proposal for other types of assets. What if a painting has not been sold by the designated date? In this circumstance, either it must be valued on the recognition date, which Professor Bradford assumes is not feasible, or tax consequences must be deferred until realization, and an interest charge has to be used, as he suggests. Fortunately, derivatives do not present this issue.125

A second administrability challenge of the stated-term approach is to keep taxpayers from gaming the process of selecting a maturity date, for instance, by omitting the term or making it conditional. If a taxpayer bets the price of IBM will go up, she should not be allowed to make the maturity date depend on the value of IBM or a related index; otherwise, the parties could provide that if the taxpayer has a built-in profit above a certain level, the contract never matures.126 To discourage taxpayers from gaming the definition of maturity, mark-to-market should govern any derivatives that are not "plain vanilla."

Third, although the stated-term approach does not require taxpayers to continuously value the asset, it imposes a different sort of record-keeping burden. If the parties terminate their contract prior to maturity, they need to remember their gain or loss since it will not be currently recognized. In addition, taxpayers obviously must not lie about the derivative's term. To keep taxpayers honest, the amount of gain and loss (and possibly also the term of the derivative) should be disclosed contemporaneously, and special penalties may also be needed.127

Fourth, the stated-term approach sometimes requires the government to bear the taxpayer's credit risk for a long period of time. For

125 If the derivative is cash settled, the gain or loss is easy to compute (and, indeed, there already is a realization event under current law). Yet matters are more complicated if the derivative is physically settled (i.e., so that the underlying property changes hands). The buyer would not be treated as having a realization event under current law. This rule should be changed if the stated-term approach is adopted. As suggested below in connection with the zero rate approach, physical settlement should be treated as two transactions: cash settlement of the derivative and transfer of the property for fair market value. See infra Part IV.D.3. This means the underlying property needs to be valued on the recognition date; in this respect, the stated-term approach faces the same administrability hurdle with derivatives as it would with the underlying.

126 In theory, symmetry would discourage this strategy, but symmetry would not hold if dealers remain on mark-to-market accounting.

127 By analogy, the straddle rules provide special disclosure obligations. See I.R.C. § 1092(a)(3)(B) (2004) (requiring each taxpayer to disclose all unrecognized gains).
example, if a taxpayer terminates a five-year derivative at a gain after one year, tax is not due for four years.128 Obviously, mark-to-market does not present this issue, since the tax bill is settled each year. Even so, forcing the government to take credit risk should not be a fatal problem for the stated-term approach. For one thing, derivatives are available only to taxpayers with strong credits. Also, a similar credit issue already exists under current law—for a broader pool of taxpayers, including weaker credits—and it appears to be manageable. Taxpayers already can borrow against appreciated assets, siphoning away value that includes the government’s built-in tax liability. If they spend this money or invest it unsuccessfully, the government may be unable to collect the tax when it comes due. In response, current law provides the government with tax liens and other rights in bankruptcy. If these mechanisms are adequate under current law, they should be adequate for the stated-term approach.129

In any event, if the credit and record-keeping burdens are too onerous, a modification in the proposal eliminates them: Instead of deferring gains and losses, we could reduce their size. In other words, gains and losses would be taxed immediately—eliminating the credit and record keeping issues—but the amount included or deducted would be the present value of what would have been included or deducted at maturity.130 For example, assume a taxpayer closes out a derivative for a $108 loss one year prior to maturity. If the taxpayer’s borrowing cost is 8%, she would be allowed to deduct $100 this year. An obvious challenge here is to measure the discount rate correctly, but other tax rules already face this challenge, and standard presumptions can be used as a backstop.131

128 A parallel issue is that potentially cash-strapped taxpayers must wait for their deduction, but the availability of other sources of credit mitigates this issue.

129 Another administrability issue is how gifts should be treated under this system. Should tax-sensitive donors be allowed to transfer derivatives with built-in gains to tax-indifferent donees? Should tax-indifferent donors be allowed to transfer derivatives with built-in losses to tax-sensitive donees? These issues already exist under current law, and our current system (allowing transfer of gains but not losses) could be retained. One point to keep in mind, though, is that a reform alternative—treating a gift as a realization event—would have to be implemented with care. We would not want a gift to trigger an immediate deduction for a loss, since this would restore the taxpayer’s timing option. Instead, the gift could be treated as a sale, which, under the stated-term approach, means that the loss would be deferred until the derivative’s stated maturity date. I thank David Shakow for raising this issue.

130 I thank Reed Shuldiner for this idea.

131 See, e.g., Treas. Reg. § 1.1275-4(b)(3) (as amended in 1999) (relying on issuer’s “comparable yield” and using the applicable federal rate as a backstop). One disadvantage of this regime is that some form of the straddle rules becomes necessary. Otherwise, taxpayers could enter into a straddle, terminate their loss position early, and then replace this loss leg with a similar position (which has to be slightly larger in order to match the growing present value of the built-in gain on the other leg). While the present value of the currently deducted loss is the same as that of the deferred gain, taxpayers may be able to keep sheltering gains (i.e., by continuously enlarging the bet). I thank Dale Collinson for this observation. This problem is not presented by the unmodified stated-term approach,
3. **Zero Tax Rate for Derivatives.** — Another way to set the gain-loss ratio at one is to use a zero rate. In some ways, this is the simplest and most radical approach. Like life insurance, a corporation’s transactions in its own stock, and, of course, the treatment of capital gain in jurisdictions that do not tax capital gain, derivatives could be removed from the tax base. No tax would be due on risk-based gains, and no deduction would be offered for risk-based losses.

 a. **Eliminating the Timing Option and Related Planning.** — By allowing no deduction for losses, this proposal obviously eliminates the timing option. There is less need for loss limitations such as the wash sale and straddle rules. Some costs of the mark-to-market and stated-term approaches are avoided as well. For example, taxpayers are spared the trouble of scaling up (which probably is not costless, even if it is cheap). In addition, the fact that the tax system is nonrefundable does not discourage taxpayers from using derivatives (since taxpayers will always be subject to a zero rate on derivatives, regardless of their other income).

 b. **Pressure on the Boundary with Wages and Time-Value Returns.** — A severe disadvantage of this approach, however, is that it will motivate taxpayers to disguise time-value returns and wages as (zero-taxed) returns to risk. In response, an imputation rule is needed for derivatives that involve prepayments, such as prepaid forwards, options, and contingent debt. Otherwise, the zero tax rate would tempt taxpayers to construct positions that are nominally derivatives but, in substance, are loans. Relatively, the zero tax rate should not apply to wages, including compensatory stock options.

 Walling off these instruments will introduce complexity, and the zero rate will give taxpayers added incentive to game this distinction. To

since losses on one leg of a straddle are irrevocably deferred until maturity (at which point the gain on the other leg also will be recognized).

132. See I.R.C. § 101. Some taxpayers believe they can claim losses on life insurance by selling the contract. Although this technical issue is beyond the scope of this Article, it is worth noting that, under the reform agenda outlined here, losses should not be deductible if gains are not taxable. Likewise, taxpayers should not be able to change the tax result by selling the contract instead of keeping it.

133. To be precise, in the context of residential real property, losses are not deductible, imputed income is not includible, and the first $250,000 of capital gain is excluded (or $500,000 per couple). See id. § 121.

134. See id. § 1032.

135. See id. §§ 1091–1092. To be precise, these rules no longer have to apply when both of the relevant positions are subject to a zero rate. Nonetheless, special rules are needed, for instance, if one leg of the straddle is the underlying property and the other is a derivative.

136. Likewise, special (potentially complex) rules are needed to impute interest when taxpayers replace nonprepaid derivatives that are out of the money with nonprepaid derivatives that are at the money. For a discussion, see supra note 49.

137. For example, a taxpayer could enter into a prepaid forward to buy something and, at the same time, a nonprepaid forward to sell it. The net (hedged) position would be a fixed-rate loan. For a discussion of this strategy in the context of section 1032, see infra Part VI.A.
my mind, this is the most significant problem with a zero tax rate. Once again, there is an irony here. We need a positive tax rate on risky bets not to collect revenue on these bets themselves, but to collect revenue from other things that otherwise would be repackaged to look like risky bets. Given the importance of this problem, the zero rate should be used sparingly.

c. Compliance and Monitoring Burdens. — In general, a zero rate imposes few compliance or monitoring burdens. There is no need to value derivatives each year, as under mark-to-market. Likewise, there is no need to keep track of the term of the contract and related information, as under the stated-term approach. These are distinct advantages.

Even so, some burdens remain. First, walling off time-value returns and wages will introduce complexity, as noted above. In addition, assuming the zero rate does not also apply to the underlying property, physical settlement of a derivative (i.e., delivery of the underlying property to settle the contract) has to be treated as a realization event. This departure from current law is needed to keep taxpayers from converting (non-deductible) losses on a derivative into deductible losses on the underlying. To foreclose this strategy, physical settlement has to be taxed as two transactions: cash settlement of a derivative (on which no gain or loss is recognized), followed by transfer of the underlying property for fair market value.

E. Summary of Advantages

To sum up, by setting the gain-loss ratio at one for risk-based returns, policymakers reap three advantages. First, they keep the tax system from discouraging risk-taking. Second, and more importantly, they eliminate a

138. Just as the zero rate undertaxes interest and wages, it also overtaxes derivatives in one respect: Taxpayers typically pay their dealer a fee for arranging the contract, and it seems inappropriate to deny them a deduction for this fee.

139. For example, assume a buyer on a forward contract commits to pay $103 in one year for stock currently worth $100, and, after one year, the stock price has declined to $63. If the parties "cash settle" the derivative—so the loser pays the winner the difference between the forward price and fair market value—the buyer pays $40 to the seller and, under the zero tax approach, cannot deduct this loss. But what if instead the buyer takes delivery of the underlying stock? Under current law, the buyer does not have a realization event and, instead, is treated as acquiring the stock for the (above-market) price of $103. With this inflated basis, the buyer can immediately sell the stock at a $40 deductible loss (since the loss, technically, is on the stock and not the derivative). Correspondingly, the seller would have inflated her taxable income by the same amount. A $40 nontaxable profit on a derivative is converted into a $40 taxable gain on the underlying (since she is treated as selling the underlying stock for $103, but could have sold it for only $63 in the market). But the seller would not suffer this tax cost if she is a foreigner, tax-exempt, or, more likely, a securities dealer subject to mark-to-market accounting (for whom cash and physical settlement are taxed the same way).

140. In this example, the buyer has a $40 (nondeductible) loss on the derivative and a $63 basis in the stock. Congress took a similar tack in the constructive ownership rule of section 1260. See I.R.C. § 1260.
substantial volume of planning, along with its entailing inequity and social waste. Third, they retain significant administrative flexibility. Indeed, rules that seem very different at first blush—mark-to-market accounting, the fixed-term approach, and a zero tax rate—all set the gain-loss ratio at one. As long as derivatives can be scaled up cheaply and time-value returns and wages are effectively walled off, taxpayers have little incentive to prefer (and thus to plan their way into) one of these rules, as opposed to another. Thus, policymakers have the luxury of choosing based solely on administrability.

V. NORMATIVE ASSESSMENT: LIMITATIONS OF THE AGENDA FOR REFORM

While the agenda proposed here has distinct advantages, it shares three limitations that already burden current law. First, even if it is relatively easy to set the gain-loss ratio at one for derivatives, it may be harder to do for other investments; as a result, taxpayers may have an incentive either to prefer or to avoid derivatives, depending upon what the gain-loss ratio is in other sectors. Second, the balance approach does not allow policymakers to apply progressive rates to risk-based returns on derivatives. Third, the agenda is not designed to generate revenue from these returns, at least on a risk-adjusted basis.

A. Sectoral Inconsistency

The claim so far is that inconsistencies in the tax treatment of different types of derivatives will not prompt planning as long as the gain-loss ratio is set at one for each type (and, of course, time-value returns and wages are taxed separately). But what if we broaden our lens beyond derivatives? Obviously, the strategy proposed here—a gain-loss ratio of one and an imputation system for time-value returns—becomes all the more appealing if coordinated with comparable reforms for other assets, such as stocks, bonds, and real property. On the other hand, the reform strategy will not discourage planning to the extent that, in other parts of the economy, (1) the gain-loss ratio for risk diverges from one or (2) time-value returns or wages are taxed differently. Taxpayers will have tax-based reasons to shift into or out of derivatives, depending upon how their treatment compares to that of other investments.

Needless to say, such sectoral inconsistency already is a significant problem under current law. The agenda here is not a complete solution, since it is politically unrealistic to expect it to be implemented across the

141. Although it is beyond this Article's scope to explore the details of applying this agenda to other types of assets, it is worth mentioning two points. First, an important problem is that, with some of these assets, scaling up will be costly. For example, building two factories is, indeed, more costly than building one. One response to this problem is that a low effective tax rate should be used for assets that are hard to scale up (so that less scaling up is needed to cancel out the tax). Yet this raises a second issue. Whenever a low tax rate is used, policymakers need to focus more rigorously on distinguishing risk from time-value returns and wages.
board for investments other than derivatives. Although the agenda will not completely solve this problem, it is unlikely to make it worse. To predict the effects of the agenda, we should ask how it compares with current law for these other investments. To do so, this section considers three issues: rates, timing rules, and the treatment of time-value returns. The bottom line is that the gain-loss ratio could well be close to one on average for investments other than derivatives, but is likely to diverge in particular circumstances—a fact that will lead to some planning.

1. **Tax Rates.** — First, the tax rate for many risky investments is (perhaps surprisingly) flat under current law, especially for passive investments. The long-term capital gains rate generally is 15%, and this rate applies to a sizable share of investment profits and losses, including dividends. Similarly, the corporate tax rate is fairly flat, as the 35% rate kicks in at a low threshold. Other investments are taxed at a zero (and thus flat) rate, such as IRAs, life insurance, and residential real property.

Of course, not all risk-based returns are taxed at a flat rate under current law. For one thing, the nonrefundability of losses can be important when undiversified bets represent a large proportion of a taxpayer’s income, although carryforwards can mitigate this effect substantially. Another divergence from flat rates is that short-term capital gain is taxed at (progressive) ordinary income rates, and some risk-based returns are taxed as ordinary income. In addition, ordinary (progressive) rates apply to the active business income earned by individuals (e.g., through sole proprietorships and partnerships). Yet a sizable share of this income is earned by taxpayers whose salaries already put them in the top bracket. For them, additional income (as well as a reasonable level of deductions) will not change their bracket, so the gain-loss ratio for marginal income and deductions is effectively one as well.

2. **Timing Rules.** — Another important influence on the gain-loss ratio is timing. As noted above, the timing option tends to push the ratio below one, while the capital loss limitation exerts offsetting pressure. What is the net effect? Data limitations are formidable here, but an important recent study sheds some light on the question. Alan Auerbach,

142. I.R.C. § 1(h)(1)(C). For low-income taxpayers (who typically have few investments yielding capital gains), a lower rate applies.

143. See id. § 11(b) (setting tax rate at 35% for income over $10 million, barely higher than the 34% tax for income over $75,000).

144. These rates apply to capital assets that are held for less than one year, id. § 1222(1), and also to profits from short sales, id. § 1233(b)(1), and short securities futures.

145. For example, rental and interest income each contain risk as well as time-value components, but are taxed as ordinary income (unless the lease or bond is sold at a profit, in which case this profit, which represents the capitalized value of future payments, can be taxed as long-term capital gain in some cases). Generally, payments on notional principal contracts are taxed at ordinary rates as well. See infra Part VI.C.

146. Since human capital contributes significantly to these entrepreneurial returns, they are not the focus of this Article. See supra Part III.B.2.
Leonard Burman, and Jonathan Siegel use panel data on realizations of capital gains and losses from 1985 to 1994 for approximately 13,000 disproportionately wealthy filers.147 The study has two provocative results. First, it is relatively rare for taxpayers to shelter gains with losses—and even rarer to realize more losses than gains.148 Therefore, they conclude that most taxpayers do not make aggressive use of the timing option.149 This finding also implies that the capital loss limitations are not an especially powerful constraint (since many taxpayers have gains that go unsheltered).

The second finding, which is perhaps more important for our purposes, is "that a minority of taxpayers—mostly with higher incomes and wealth—manage to shelter all or most of their gains with losses."150 This group grew over time, so that "[a]s many as one-third of the wealthiest taxpayers were able to realize their gains without immediate tax . . . in the early 1990s."151 Notably, a salient characteristic of this tax-savvy subset is that many had engaged in at least one derivatives transaction.152

The study probably understates the power of the timing option, moreover, because of an important data limitation. The study does not measure gains (and, for that matter, losses) that are never realized.153 In all likelihood, at least some wealthy taxpayers in the sample have substantial unrealized gains.

Thus, it is reasonable to conclude that the gain-loss ratio for capital gains is fairly close to one for many taxpayers and is lower—perhaps even substantially lower—for a sophisticated (and growing) core of wealthy taxpayers.

147 See Auerbach et al., supra note 74, at 358–62.

148 Specifically, "[t]wo-thirds of taxpayers with gains or losses are able to shelter less than 10 percent of their gains. . . . About 12 percent of taxpayers shelter all their gains . . . [and] only 6 percent of gains are fully sheltered." Id. at 374.

149 Id. at 379–80.

150 Id. at 380.

151 Id. For another empirical study of a type of sophisticated tax planning, in which corporate taxpayers simulate a sale without triggering tax, see generally William M. Gentry & David M. Schizer, Frictions and Tax-Motivated Hedging: An Empirical Exploration of Publicly-Traded Exchangeable Securities, 56 Nat'l Tax J. 167 (2003).

152 The study's measure of sophistication is whether the taxpayer has ever reported gain or loss from options, commodities, future contracts, or short sales. Auerbach et al., supra note 74, at 366. Members of this sophisticated subset are more than twice as likely as other taxpayers in the sample to shelter all their gains from tax in a given year. In every year of the sample, moreover, 20% of these sophisticated investors are able to shelter all their capital gains (although it is not always the same 20%). Gains from derivatives are also much more likely to be sheltered than gains from other investments. Id.

153 The authors try to measure this important fact indirectly through a different data set, the Survey of Consumer Finances. They posit that if high-income taxpayers tend to defer the realization of gains, then unrealized gains should be more concentrated among high-income people than realized gains. The survey does not support this prediction, although the authors concede that this data sample—the only one available—includes few high-income respondents. Id. at 379. Thus, the authors conclude, "[m]uch further research is needed in this area. . . . We could make only indirect inferences about the gains that are never realized but represent the most successful avoidance strategy." Id. at 380.
taxpayers.154 Even among sophisticated taxpayers, the gain-loss ratio will vary with the taxpayer's situation. As noted above, the capital loss limitations are irrelevant to someone who already has gains she is going to recognize (e.g., from hedge fund investments), so the gain-loss ratio on her other risky bets should fall below one. More generally, the combined effect of the timing option and loss limitations should vary across taxpayers, causing gain-loss ratios to be above one for some and below one for others.

3. \textit{Time-Value Returns}. — Even if the gain-loss ratio is above one for the underlying property, there is still a way in which investors in derivatives are taxed more heavily: They are more likely also to hold high-taxed debt instruments. The reason is that a swap or forward contract does not offer a time-value return and thus is not economically equivalent to the underlying property.155 To replicate the underlying, the taxpayer must also buy debt,156 which bears a relatively heavy tax burden (accelerated timing at ordinary rates). In contrast, the underlying offers a time-value return that is not separately taxed as interest under current law. As noted above, any investment that requires a prepayment compensates investors for time value. When the underlying is subject to the realization rule, no tax is due on embedded time-value returns until the property is sold. If the taxpayer holds the property for more than a year, the long-term capital gains rate applies; if the taxpayer holds the property until death, the basis steps up and no income tax is ever due.

To sum up, then, the treatment proposed here for derivatives generally should not be more favorable than the treatment of other risky positions is likely to be. Yet the word "generally" is important. Tax considerations will motivate some taxpayers either to shift into, or out of, derivatives. Taxpayers who can make aggressive use of the timing option (e.g., because they already must recognize capital gains) will prefer the underlying property, while taxpayers who are otherwise constrained by the capital loss limitations are likely to prefer derivatives. All else being equal, these tax-based preferences suggest the superiority of comprehensive reforms. But all else is not equal, since fundamental reforms are unlikely. In their absence, we must consider the problem of sectoral inconsistency. It should not be serious enough by itself, however, to scuttle this proposal. After all, given the aggressive strategies available for derivatives under current law, we already have sectoral inconsistency in spades.

154See Schenk, supra note 12, at 429 (noting that loss limitations "have no effect on large numbers of taxpayers, who despite nominal limitations on the deductibility of losses, are able to shift sufficient risk to the government to eliminate the burden of the tax on the return to risktaking").

155If the derivative does offer time-value returns, as do prepaid forwards, options, and contingent debt, the proposal here would use an imputation regime to tax these returns as interest.

156This is an application of "put-call parity." For an explanation, see Warren, Innovation, supra note 1, at 465–67.
B. Progressivity

To keep inconsistencies from prompting planning, the gain-loss ratio must be one for risk-based returns on derivatives. An implication is that graduated rates cannot be used for the returns on derivatives. In other words, profits on a derivative cannot bring a taxpayer into a higher bracket, and losses cannot bring a taxpayer into a lower bracket. Otherwise, the gain-loss ratio on a given bet would exceed one, leaving taxpayers unable to cancel out the tax by scaling up and, thus, inclined to prefer deferral and low rates.\(^\text{157}\)

Although progressivity is a significant value,\(^\text{158}\) derivatives already are taxed at essentially flat rates under current law. The long-term capital gains rate is a flat 15% for individuals. Even ordinary rates “feel” flat as well, because only wealthy taxpayers have access to derivatives, and, typically, their other income puts them well within the maximum bracket; as a result, extra income from derivatives does not raise their rate, while deductions (in reasonable amounts) do not lower it. If anything, the rate structure is even more flat for corporations that use derivatives. So, the agenda here is at least as progressive as current law.

More dramatically, by curtailing the aggressive planning of wealthy taxpayers, this reform agenda would increase the system’s progressivity. After all, the status quo works to the advantage of wealthy taxpayers, who sometimes can use derivatives to shelter income from other sources. As a result, the status quo is likely to be regressive, so a shift to neutral tax treatment is a step in the right direction.

In addition, an important argument for progressivity—the desire to insure taxpayers against having low incomes—does not apply to derivatives. In the wage market, it is useful for the government to redistribute income from winners to losers,\(^\text{159}\) since private insurance cannot offer

157. Note that it is still possible to use different (flat) rates for different individuals. For instance, the rate for an individual with $1 million of income from other (nonderivative) sources could be higher than the rate for an individual with $50,000 of income from other sources. I thank Al Warren for this observation. In addition, it is theoretically possible to apply a progressive rate structure to each bet separately (i.e., a rate structure in which tax rates become increasingly positive for gains and increasingly negative for losses). Although this rate structure offers a gain-loss ratio of one, it is too unwieldy to be practical.

158. For an argument that all returns, including risk-based ones, should be taxed at progressive rates, see Lawrence Zelenak, Taxing (or Not) the Returns to Risk-Bearing 28–36 (Dec. 17, 2003), available at http://www1.law.ucla.edu/~taxpolicy/Documents/Larry%20Zelenak—Taxing%20(or%20Not)%20the%20Returns%20to%20Risk-Bearing.pdf (on file with the Columbia Law Review).

159. To see the application to wages, assume a taxpayer does not know whether her wages will be high or low. Before she finds out, it makes sense for her to offer the government a larger share of a high wage so that, in return, she can pay a smaller share of a low wage. This way, she transfers money from times when she has a high wage (and, given diminishing marginal utility, values the last dollar less) to times when she has a low wage (and thus values the last dollar more).
this service.160 However, for two reasons, this rationale does not work for derivatives. First, a government role is unnecessary, since taxpayers already can insure themselves against the relevant risk (i.e., losses on derivatives) by placing smaller bets. Second, progressive rates are an odd way to provide insurance for derivatives. The problem is that insurance is supposed to help the loser, but a gain-loss ratio above one, by definition, offers a less valuable deduction, and thus is less helpful, than a gain-loss ratio of one.161

For derivatives, then, a gain-loss ratio above one looks more like an excise tax than social insurance. It is a way for the government to take a cut of the bet, claiming more from the winner than it gives to the loser. Since every taxpayer will win some and lose others, mere participation in the derivatives market saddles taxpayers with a positive overall tax burden, even if they have not netted a pretax profit. Should we want such an excise tax? A comprehensive answer is beyond this Article’s scope, but two concerns come to mind. First, although the excise tax would fall more heavily on wealthy taxpayers, since they are more likely to use derivatives, there obviously are other ways to pursue this sort of distributional goal, including a more progressive rate structure for wages and time-value returns. Second, a gain-loss ratio above one for derivatives denies us the efficiency benefits emphasized in this Article, including freedom to tolerate inconsistencies in the service of administrability.162

C. Revenue

Another limitation of this reform agenda is that it has a very modest revenue goal: to prevent taxpayers from using aggressive strategies with derivatives to shelter other income. In other words, the objective is to

160 Customers know more about their earnings prospects than insurers, and customers who expect low wages are more likely to want this insurance. The tax system is less susceptible to this adverse selection problem because participation is universal.

162 While many readers will agree that progressivity is unnecessary here, some may not. For them, an important theme of this agenda nevertheless remains critical: Policymakers need to focus on differences between the government’s share of gains and losses. For example, there are efficiency costs when taxpayers have a timing option, even if the gain-loss ratio would otherwise exceed one (e.g., due to progressivity). Thus, policymakers still need effective and nondistortive responses to the timing option. More generally, policymakers who pursue progressivity obviously want the gain-loss ratio for derivatives to be at least one—and, unfortunately, chances are that it is lower under current law. Which of the reform proposals discussed above is most helpful? Mark-to-market accounting with progressive rates obviously does the trick. The fixed-term approach with progressive rates would also work if an interest charge is added to compensate for deferral. In contrast, the zero rate approach obviously does not serve this purpose.
shift from negative revenue from derivatives to zero revenue. Yet although it is theoretically possible to collect positive revenue from derivatives—by taking more from winners than we refund to losers, as noted above—this agenda does not seek to do so. Rather, with a gain-loss ratio of one, the system would collect no net revenue from derivatives, at least on a risk-adjusted basis. In a way, this is not surprising: If symmetry holds, no revenue is collected on derivatives because one party’s taxable gain is another’s deductible loss. But even without symmetry, the system collects no revenue, on average, if each taxpayer is just as likely to have losses as gains.

Of course, gains are more likely if taxpayers earn a premium for bearing risk. If this is the case, there might seem to be revenue at stake here. For example, mark-to-market could raise more revenue than the zero rate approach. But these differences are unimportant for two reasons. First, evidence suggests the risk premium has declined substantially in recent years. Second, even if the risk premium is still positive, so that the government’s share of risky bets has a positive expected value, the market value of this revenue stream is zero. The reason is that the government has to bear risk in order to collect this revenue. The revenue, which is the government’s share of the risk premium, is just enough to induce the marginal investor to bear equivalent risk. In effect, a tax on

163. Inflation supplies another reason why (nominal) gains are more likely than (nominal) losses, at least when taxpayers take “long” positions (i.e., betting that the value of an asset will rise). While our system is not fully indexed for inflation, many believe it should be. In this spirit, collecting inflation-based revenue should not be a priority, though policymakers may need to consider problems with partial indexation (including the treatment of liabilities). Yet these issues are relatively unimportant now—and are not considered in this Article—since inflation is hovering at historic lows.

164. The assumption here is that taxpayers (not a tax-indifferent counterparty) would be the ones bearing the risk and thus earning the premium on average (e.g., by being long instead of short); but, as an empirical matter, this will not necessarily be the case.

165. This premium generally is calculated at about 7% over the last century and at about 4% over the last two centuries. Yet Fama and French find a much lower number using a methodology that focuses on dividend and earnings growth instead of on average stock price return. See Eugene Fama & Kenneth R. French, The Equity Premium, 57 J. Fin. 637, 637, 655 tbl.IV (Apr. 2002) (finding a premium of 2.55% and 4.32% based on dividend and growth rates, respectively, during the period from 1951 to 2000). Similarly, Siegel claims the historical premium is lower than 7%, in part because of transaction costs and in part because the number understates the risk-free return: The latter, Siegel argues, may have been larger ex ante than it turned out to be ex post, because of unanticipated inflation. Siegel, supra note 83, at 14; see also Ravi Jagannathan et al., The Declining U.S. Equity Premium 4 (Nat’l Bureau of Econ. Research Working Paper No. 8172, Mar. 2001), available at http://www.nber.org/papers/W8172 (on file with the Columbia Law Review) (finding that, since 1970, the equity premium has declined to an average of 70 basis points). In any event, Siegel predicts the premium will be “more like 1.5 to 2.5 percentage points” in coming years. Siegel, supra note 83, at 13. In a recent survey, Ivo Welch finds that forecasts among finance economists have declined. Ivo Welch, The Equity Premium Consensus Forecast Revisited 4 (Cowles Found. Discussion Paper No. 1325, Sept. 2001), available at http://cowles.econ.yale.edu/P/pdf/d13a/d1325.pdf (on file with the Columbia Law Review) (median forecast was 3% in 2001 survey, compared with 6% in 1998 survey).
the risk premium is a lot like a direct government investment in a portfolio of risky derivatives. Unless there is a reason why the government is better at spreading risk than the derivatives market—an unlikely prospect—this sort of government risk-bearing seems unwise. Thus, in deciding how to set the gain-loss ratio at one (i.e., whether to use mark-to-market, a fixed term, or a zero rate), policymakers should focus on considerations other than revenue.

VI. Applications of the Agenda for Reform

So far, this Article has laid out the broad outlines of a reform agenda and has analyzed its strengths and weaknesses. The next step is to offer concrete applications of this agenda, focusing on cutting-edge doctrinal issues in the taxation of derivatives. We begin first with inconsistencies in the reach of section 1032, and then address inconsistencies in the treatment of hedge funds, hedge fund derivatives, and hedge fund life insurance. This Part then turns to imbalances in the character and timing rules for swaps, and concludes with the wash sale rules.

166. Weisbach, Risk-Taking, supra note 11, at 5 ("[T]his is just the revenue the government would get from taking risky market positions and it has zero risk adjusted net present value.").

167. Cf. Bankman & Griffith, supra note 12, at 392-93 ("[T]he desirability of taxing risk premia cannot be determined without a more adequate theory of how government spreads its risk back among its citizens."). After all, at the end of the day, this risk does not stay with the government. "Individuals must ultimately bear this risk," Roger Gordon observes, "whether through random tax rates on other income, random government expenditures, or random government deficits." Gordon, Corporate Capital Income, supra note 54, at 5.

168. Government risk-spreading is less necessary in sectors where financial markets are well developed. See Atkinson & Stiglitz, supra note 11, at 125 ("If, for example, the private market provides complete risk-sharing for all but 'social risks' (like the business cycle), then the argument that the government can increase risk-sharing through the tax system is less convincing."); Gordon, Corporate Capital Income, supra note 54, at 6 (claiming it is plausible to assume the "risk in government tax revenues is as costly to bear as privately traded risks"); Jeff Strnad, Some Macroeconomic Interactions with Tax Base Choice, 56 SMU L. Rev. 171, 192-94 (2003) (arguing government risk-sharing mechanisms are unnecessary and ineffective where insurance markets are well developed). Indeed, government risk-spreading seems more justified in sectors where private insurance is unavailable. See, e.g., Kenneth J. Arrow & Robert C. Lind, Uncertainty and the Evaluation of Public Investment Decisions, 60 Am. Econ. Rev. 364, 375 (1970) (considering advantages of government risk spreading); Strnad, supra, at 193 (noting that government insurance is valuable in sectors such as construction in which "[i]t may be difficult even for sophisticated parties to construct appropriate hedging portfolios"). Even then, there is the possibility that the government will spread risks in a way that is politically expedient but not socially desirable (e.g., to future generations). I am indebted to Jeff Strnad for this point.
A. Section 1032

In an important recent paper, Alvin Warren raises concerns about the scope of section 1032.¹⁶⁹ This provision applies a zero tax rate to the firm’s own stock and warrants, but does not expressly reach other types of derivatives, such as swaps. Professor Warren believes this inconsistency can trigger planning.¹⁷⁰ He emphasizes that firms can take offsetting positions to generate a tax benefit in some circumstances. For example, the firm can buy a call and sell a put (earning tax-free income as the stock price rises) while entering into a short position on an equity swap (deducting losses as the stock price rises).

Yet, as Professor Warren acknowledges, this arbitrage is attractive only if the firm knows the stock price is going up, for instance, through private information. Indeed, if the stock price declines, the firm has a corresponding tax detriment: nondeductible loss on the options matched by taxable gain on the swap. To my mind, this is not an attractive planning strategy. If the firm knows the stock price is going up, there are easier ways to profit. Why not simply buy back as much stock as possible? In any event, managers cannot be certain their stock price will rise. Predictions are hard because stock prices sometimes reflect general market and industry conditions, about which managers have no special expertise.¹⁷¹ In cases where firm-specific information is especially important, moreover, the securities laws keep (or at least are supposed to keep) firms from trading based on it.

Instead of focusing on this arbitrage, then, this Article counsels a different assessment of section 1032 or, at least, an emphasis on different problems. First, imbalances, rather than inconsistencies, are inherently problematic. Policymakers need to ensure that on each type of instrument, the gain-loss ratio is one. If gains are not taxable, losses must not be deductible. As a result, the main problem with section 1032 under current law—and the main source of arbitrage, at least of risky returns—is that there is uncertainty about the treatment of swaps and forward contracts. Although section 1032 does not expressly cover them, some advisors conclude that they are covered nevertheless, using purposive statutory interpretation.¹⁷² Thus, an important concern—but one that Professor Warren does not emphasize—is that aggressive taxpayers whipsaw the government, invoking section 1032 for profitable swaps but not

¹⁶⁹. See generally Warren, Options, supra note 14.
¹⁷⁰. Professor Warren also raises a second concern about current law: that section 1032 is inconsistent with the anti-deferral purpose of the corporate tax. See id. at 49. This issue is beyond this Article’s scope.
unprofitable ones. In short, the first priority is to clarify the rule. Once it is clarified, risk-based arbitrages become much less likely since market uncertainty, reinforced by the securities law, serves as an important constraint on tax planning.

Turning to the second prong of this Article's reform agenda, time-value returns have to be addressed separately, since setting the gain-loss ratio at one is not sufficient to block planning involving time-value returns. In this spirit, section 1032 should not permit corporations to earn what is in effect interest income tax-free.173 As an illustration of the problem, assume that a corporation pays $100 million to buy back its stock and, simultaneously, buys a put and sells a call that, in combination, obligate the firm to sell the same amount of stock for $110 million in two years. These two transactions net to a loan of $100 million, generating $10 million of interest income. Notwithstanding this substance, the form technically is a tax-free profit from selling stock. A rule is needed to impute interest income on this transaction so that section 1032 does not apply to the $10 million of interest. This step, along with a clear statement of when section 1032 applies to risky positions, would go a long way toward shutting down arbitrages involving section 1032, even if inconsistencies remain.

B. Hedge Fund Derivatives and Life Insurance

The agenda here also gives guidance about another important topic: derivatives and variable life insurance policies based on the value of hedge funds. The underlying funds are taxed at a high effective rate because they trade actively, generating short-term gains (or losses) that are taxed (or deducted) currently. In contrast, hedge fund derivatives used to offer deferred long-term gain before Congress targeted the practice in 1999 with the constructive ownership rule of section 1260. Even today, a zero rate is available with a "life insurance wrapper," a policy in which the death benefit is based on the performance of a designated hedge fund.

What, if anything, is troubling about these inconsistencies? After all, this Article has emphasized that, as long as the gain-loss ratio is one, risk-based returns can be taxed inconsistently without prompting wasteful planning. If direct investments in the hedge fund are taxed at a higher effective rate, why can't investors simply scale up these positions to cancel out the tax? Thus, was section 1260 necessary? Is further action needed for hedge fund life insurance? Consistent with the agenda described here, at least two conditions have to be policed.

1. \textit{Gain-Loss Ratio of One}. First, the gain-loss ratio has to be one. The ratio was below one for hedge fund derivatives before section 1260 was enacted, since these derivatives offered a timing option. The effective tax rate on gains was low because of deferral and the long-term capi-

173 Although Professor Warren agrees with this point, it is not the focus of his analysis. See Warren, Options, supra note 14, at 49.
nal gains rate, but losses could be accelerated by terminating the derivative early. To an extent, section 1260 has remedied this imbalance, mitigating the timing option by imposing an interest charge on gains.

Notably, though, section 1260 is not the only way, or necessarily the best way, to remedy this imbalance. For example, the interest charge applies only to a subset of gains (gains that would have been short-term if the taxpayer had invested directly in the underlying fund). As a result, some residue of the timing option remains. Notably, the mark-to-market, fixed-term, and zero-rate approaches discussed above also could have remedied this imbalance without leaving this gap. In addition, if one of these approaches had already been the general rule for derivatives, there might well have been no need for a special rule for hedge fund derivatives, so the complexity associated with a special rule could have been avoided.

Finally, section 1260 does not expressly address hedge fund life insurance. A provocative implication of this analysis is that these investments do not require special attention. The zero rate applicable to insurance is much like the zero rate approach proposed in this Article. Whereas gains are not taxed, losses are not deductible. Paradoxically, for risk-based returns, this treatment is not more favorable than other alternatives that set the gain-loss ratio at one.

2. Time-Value Returns. — The second prong of the reform agenda is to tax time-value returns separately and consistently. Before section 1260 was enacted, any time-value returns embedded in a hedge fund derivative were taxed too favorably, benefiting from deferral and the long-term capital gains rate. To an extent, section 1260 addressed this problem by applying ordinary rates and charging interest to compensate for tax deferral. Yet the scope of these remedies is limited, as noted above, to gains that would have been short-term if the taxpayer had invested directly in the underlying fund. Any time-value returns embedded in the rest of the taxpayer’s gain continue to be undertaxed.

This problem is even more acute for hedge fund life insurance. A zero rate requires policymakers to take particular care in policing the line between time-value and risk-based returns. Under current law, this line is not policed at all, as the zero rate applies to time-value returns as well. This problem needs to be addressed—not only for hedge fund life insurance, but for all variable life insurance contracts.

174. The extent of this problem should not be overstated since, as noted above, nonprepaid derivatives such as conventional swaps and nonprepaid forward contracts would not offer a time-value return. As a result, this issue was largely limited to prepaid forward contracts.

175. To an extent, the modified endowment contract rules begin this work under current law. Taxpayers cannot borrow tax-free against a life insurance policy that frontloads premiums beyond a certain level. Yet this remedy is not complete. For one thing, it does not affect taxpayers who plan to hold the policy until they die. In addition, considerable frontloading is allowed before the penalty kicks in.
3. Caveat About Sectoral Inconsistency. — Even so, an important caveat about hedge fund derivatives and life insurance should be acknowledged. This Article’s reform agenda stops planning—and, more generally, inconsistencies in risk-based return do not inspire planning—only if the gain-loss ratio is one for all possible substitutes. A potential concern here is that the gain-loss ratio for direct investments in hedge funds might be above one, at least for some taxpayers (e.g., because losses are not currently deductible). If this is the case, setting the gain-loss ratio at one for hedge fund derivatives and life insurance will not curtail planning since these instruments would still be taxed more favorably than the underlying property. In short, sectoral inconsistency may be particularly salient here.

C. Character of Swap Payments

The character of swap payments presents another important problem for policymakers. Other commentators have emphasized the importance of matching the character of swap payments with the character of economically comparable instruments. But this goal is impossible since these substitutes are themselves taxed inconsistently. For instance, returns on the underlying property are usually capital, whereas returns on contingent debt are ordinary. Yet, as this Article shows, consistency is not essential to constrain tax planning. Indeed, character rules can vary even for different types of swaps. Rather, the priority needs to be ensuring that gains and losses have the same character on any given swap; relatedly, taxpayers have to commit to this character before knowing whether they have gains or losses.

Unfortunately, current law does not conform even to this minimal condition. Taxpayers can choose their character after learning whether they have gains or losses. Early termination or a sale yields capital character (e.g., for gains), while regularly scheduled payments yield ordinary character (e.g., for losses).

177. See supra Parts II.A, IV.B.

178. See I.R.C. § 1234A (2004). Once again, symmetry is not a constraint here because the usual counterparty, a securities dealer, is unaffected by early termination: The dealer markets to market, and its character is ordinary. See id. § 475.

179. The character of swap payments is ordinary if the underlying bet is settled with periodic payments. See Priv. Ltr. Rul. 97-30-007 (Apr. 10, 1997). In contrast, if the bet is settled only at maturity, the character of this payment has been unclear, but recent proposed regulations take the position that it also is ordinary. See Prop. Treas. Reg. § 1.1234A-1(a), 69 Fed. Reg. 8886, 8898 (Feb. 26, 2004).

180. Ordinary losses obviously are especially appealing, since they are not subject to the capital loss limitations and can shelter salary income, although ordinary swap losses may be subject to other limitations. For individuals, swap deductions probably are classified as miscellaneous itemized deductions under section 67 unless they are incurred...
In response, a balanced character rule is needed, and it almost does not matter what it is. All told, ordinary character is preferable because of the second prong of the reform strategy discussed here: the need to provide consistent treatment for time-value returns and wages. If the character is capital, policymakers will have to scrutinize swaps more carefully for hidden time-value returns or wages, a task that is not always easy. The stakes obviously are lower if the character of swaps is ordinary. To be clear, this will require changes in the treatment of sales and terminations.

If ordinary character is used for swaps, four refinements are needed. First, since the capital loss limitation will not apply, other constraints on the timing option are essential, including either mark-to-market accounting or the fixed-term approach. (Indeed, since these constraints are more precise than the capital loss limitations, they are preferable even if policymakers choose capital character instead.) Second, if other instruments are treated as capital in character—for instance, forward contracts and bullet swaps under new proposed regulations—clear guidance is needed to distinguish them from swaps. Otherwise, taxpayers might be tempted to call an instrument a swap if it yields a loss, but something else if it yields a gain. Third, to keep the gain-loss ratio at one, the tax bracket should be computed without reference to gains or losses on the swap (i.e., so that the return on the swap cannot shift the taxpayer into a different bracket). Finally, for the same reason, swap losses should not be subject to any limitations, including classification as miscellaneous itemized deductions.

D. Timing of Contingent Nonperiodic Payments on Swaps

The reform agenda also gives guidance on the timing rules for swaps. Swaps that include a one-time, or "nonperiodic," contingent payment at maturity present unique timing problems that, unfortunately, the original swap regulations failed to address. In 2001, the government issued a no-
tice seeking comments on various approaches, and in February 2004, the government issued proposed regulations. This section describes the special timing problems for contingent nonperiodic payments and then analyzes the noncontingent swap method, the default rule of the 2004 regulations. This section then compares this approach to the mark-to-market and stated-term approaches considered in this Article. This discussion is especially timely because the regulations are merely in proposed form, and policymakers will need to give the issue careful thought before guidance goes into effect.

"Nonperiodic" contingent payments present three potential timing problems. First, like other derivatives, they can offer a timing option (i.e., taxpayers can accelerate losses by selling or terminating the swap). Indeed, the timing option is even more potent because certain swaps are thought not to be subject to the wash sale rules. Second, taxpayers do not have to sell or terminate the swap to trigger a deduction; instead, they can use a formula that backloads income. In a notorious example, which has become a listed transaction, the taxpayer makes annual periodic payments and, in return, receives their capitalized value at maturity. In effect, the taxpayer is lending money. Nevertheless, there used to be a technical argument that the taxpayer could deduct these payments currently, while deferring inclusion of the offsetting income until the swap matured. It is easy to imagine other ways of frontloading deductions. For example, assume Larry expects XYZ stock to appreciate above $100 per share, so he enters into a swap based on the value of 10,000 shares. Every year, Larry pays a fixed rate of 5% of the $1

188. In general, the regulations are proposed to be effective thirty days after they are published in final form. In the interim, taxpayers are left with some flexibility about how to treat these contracts, although the scope of this freedom is somewhat unclear. The preamble to the proposed regulations allows taxpayers who have adopted a proper method of accounting for swaps with contingent nonperiodic payments to keep using this method until the regulations become effective. See id. But it is not clear whether the most common practice—accounting currently for the periodic payment while deferring the contingent nonperiodic payment until it is made—qualifies as a proper method of accounting for this purpose.
189. The relevant class of swaps are those in which the bet is settled only through periodic payments, and not through a single payment at maturity. The argument is that these swaps are not "contracts to acquire." For a discussion, see Schizer, Wash Sale, supra note 80, at 67, 72.
190. A "listed" transaction is one the government designates, usually in a notice, as subject to special disclosure requirements and penalties.
191. If the payment at maturity is fixed in advance, a portion of it must be included every year, in effect offsetting the deduction of the periodic payment. As long as the maturity payment was contingent, the regulations in effect at the time did not require this accelerated inclusion. In the listed transaction, there was a lump sum payment subject to a very modest contingency. See Rev. Rul. 2002-30, 2002-1 C.B. 971; I.R.S. Notice 2002-35, 2002-1 C.B. 992.
million notional value of this stock (i.e., $50,000).192 After three years, Larry receives a payment based on any increase in the value of the 10,000 shares and makes a payment based on any decrease. Larry will have frontloaded his deductions if he can deduct periodic payments currently, while delaying any inclusions on the contingent nonperiodic payment until maturity.193

Third, in frontloading his payments on the swap, Larry is implicitly earning a time-value return. He is able to pay a smaller nominal amount than if he had made these payment at maturity, as in a forward contract.194 Is this time-value return taxed as interest?

I. Noncontingent Swap Method. — The “noncontingent swap method” aims principally at the second and third problems (i.e., frontloading and time value), while offering only a partial response to the timing option. This method accelerates income from the nonperiodic contingent payment, requiring the taxpayer to accrue a portion each year.195 Since (by definition) we do not know what the payment actually will be until it is made, the taxpayer is directed to project (or, to use a more colloquial word, to guess) what it will be. Later, when better information is available, adjustments are made in the form of extra inclusions or deductions to correct earlier errors.196

Of course, any prediction of XYZ’s value in three years will be sketchy at best. However, although risky bets are inherently unpredictable, a stock should appreciate by at least the risk-free rate, on average, or everyone would buy Treasury bonds. To project what Larry will receive at maturity, then, the noncontingent swap method assumes XYZ stock appreciates at the risk-free rate.197 In the typical case, this should turn out to be essentially the same as the compounded value of the periodic pay-

192 Since XYZ is a “growth” stock, it does not pay a dividend. As a result, Larry does not receive an annual payment based on the dividend in XYZ stock.

193 Indeed, the swap can be rewritten to provide even more extreme frontloading: Each year, Larry can make an annual payment based not only on the 5% finance charge, but also on any declines in the value of XYZ stock. In other words, any value-based payments Larry pays are moved up into periodic payments, while any value-based payments Larry receives are deferred until the final contingent nonperiodic payment.

194 In the above example, Larry’s total finance charge is $150,000 (i.e., $50,000 per year for three years). But if he had paid it at maturity, as in a forward contract, the total would be $157,625. The extra $7,625 derives from compounding.

195 The choice to accelerate this income is not surprising, since the swap rules already go a similar route when the payment at maturity is not contingent. For example, assume Larry pays 5% for three years and, at maturity, receives a fixed payment equal to the compounded value of these payments. The swap rules accelerate the income from this fixed payment, taxing Larry on a portion of it each year.

196 Obviously, this “noncontingent swap method” is cribbed from the “noncontingent bond method” used for contingent debt. See Treas. Reg. § 1.1275-4 (as amended in 1999).

197 To be precise, the regulations direct taxpayers to base projections on publicly available forward prices, if any are available. But a forward price is merely the current price increased by the risk-free rate. If forward prices are not available, taxpayers are explicitly directed to increase the underlying’s current value by the risk-free rate.
ments he has made, which generally are also based on the risk-free rate.198 Put another way, Larry should earn at least as much at maturity, on average, as he has paid through periodic payments.

Using this assumption, the proposed regulations solve the frontloading and time-value problems. In the example, Larry is assumed to receive $157,625 at maturity, which represents the compounded value of a 5% return. Amortized back, this is equivalent to receiving $50,000 per year. Since this is the same as his periodic payments, this inclusion fully offsets his deduction (eliminating frontloading). Since Larry is not actually receiving this amount until maturity, though, the swap is assumed to offer him an extra $7,625 of interest, which (if it is significant enough)199 is taxed separately (solving the time-value problem).

Unfortunately, though, this methodology does not fully curtail the timing option. If the underlying underperforms the risk-free rate, Larry can trigger his loss by selling or terminating the swap (albeit at the cost of transforming the character of his loss from ordinary to capital).200 But if the underlying outperforms the risk-free rate, Larry can defer this built-in gain until maturity (or, of course, a termination the day before then, in order to secure capital character). The regulations address the timing option, to an extent, by providing for annual adjustments. But the end result is substantially more complexity with little to show for it. Every year, Larry has to recompute what he expects to receive at maturity and amortize this amount over the term of the swap. This is a step toward mark-to-market—unfortunately, involving all the same challenges in valuation—but it does not eliminate the timing option. Indeed, it requires more work in return for less accuracy. In a given year, the taxpayer’s return reflects only a portion of the change in the swap’s market value; the rest is assigned to future years and thus has no current effect on his tax return.201 As a result, taxpayers can still accelerate losses by terminating the swap when this methodology overstates their income, while deferring gains by keeping the swap when this methodology understates their

198 Since the swap payments are not based exactly on the risk-free rate, a more economically precise approach would use the actual financing rate in the swap.

199 The test is whether the nonperiodic payment is “significant.” If so, the swap is bifurcated into an on-market swap and a loan, and interest is imputed on the loan. Prop. Treas. Reg. § 1.1234A-1(c)(2), 69 Fed. Reg. 8886, 8893 (Feb. 26, 2004).

200 See Prop. Treas. Reg. § 1.1234A-1, 69 Fed. Reg. 8886, 8898 (Feb. 26, 2004). This difference in character may be less important to corporations, since they are ineligible for a rate preference.

201 In the above example, assume the underlying stock appreciates from $100 to $200 after one year. The projected maturity payment, then, increases from $157,625 to approximately $1.2 million (reflecting a $1 million increase in the underlying’s value). But this full $1 million is not immediately taxed. Instead, only about $750,000 of it is taxed: that is, an adjustment of approximately $350,000 for the prior year and approximately $400,000 for the current year, but nothing for the $400,000 allocated to the final year of the swap. When appreciation occurs early in the term of the swap, this effect is especially pronounced (since there are proportionately more future years).
income. Given the extraordinary complexity associated with this approach, it is worth seeking a simpler and more effective solution.

2. Mark-to-Market Accounting. — In this spirit, mark-to-market is much better, and, fortunately, the proposed regulations allow taxpayers to elect mark-to-market. Indeed, it may be that the government does not expect taxpayers to use the noncontingent swap method. Perhaps their strategy is to propose something so cumbersome that the mark-to-market election will seem irresistible. In any event, like the noncontingent swap method, mark-to-market eliminates frontloading and the time-value problem (assuming the taxpayer’s marginal rate for ordinary income is used, as suggested above). In addition, unlike the noncontingent swap method, mark-to-market completely eliminates the timing option. Nor will taxpayers necessarily shy away from mark-to-market; instead, as long as losses are fully deductible, they can cancel out the higher effective tax rate by increasing the size of their swap.

Ironically, mark-to-market is simpler to administer than the noncontingent swap method. Both approaches require annual valuations, but mark-to-market avoids—or, at least, it ought to avoid—the burden of amortizing projected payments each year. Unfortunately, the regulations sacrifice some of this advantage. Even taxpayers who elect mark-to-market must account for time value separately, using the noncontingent swap method. Accordingly, these taxpayers have to project a payment upon acquiring the swap, and they have to impute interest each year. The only administrative savings of marking to market is that the projected payment and interest are computed only once, since mark-to-market, instead of annual adjustments, is used in subsequent years. Presumably, in cluttering mark-to-market this way, the government is trying to distinguish interest, on one hand, from swap income and deductions, on the other, as a way of policing limitations that apply to one or the other. For example, investment interest limitations apply only to interest. But the rationale for at least some of these limitations is less relevant if mark-to-market applies. With investment interest, for example, income on the financed investment is no longer deferred, so there is less need to defer interest deductions.

3. Stated-Term Approach. — Although less desirable than mark-to-market, the stated-term approach has two advantages over the noncontingent swap method. First, it eliminates the timing option. Because all income and deductions on the swap are deferred until the scheduled maturity,

202. The PFIC rules took a similar approach, pairing a cumbersome default rule with elections that have become the general practice. See I.R.C. §§ 1291–1298 (2004).
203. See supra Part II.B.
204. See I.R.C. § 163(d).
205. Unfortunately, the same cannot be said for other reasons to treat interest separately. See supra note 113.
tax timing cannot change once taxpayers know whether they have gain or loss.206

Second, the stated-term approach is easier to administer. Even though taxpayers must keep records of gain or loss from earlier years, they are spared the need to project the maturity payment and amortize it back each year. After all, there are two ways to solve the frontloading of deductions: either accelerate income (as in the noncontingent swap method), or defer deductions (as in the stated-term approach). While each approach erases the frontloading, the latter is simpler. The stated-term approach implicitly estimates the market value of the final nonperiodic payment to be the same as the periodic payments that Larry has to make, thereby avoiding the need for some other estimate.207 In effect, deferring all of these payments gives essentially the right answer in a very simple fashion.

However, the stated-term approach does have one disadvantage: To deal with the time-value problem, this approach becomes somewhat more complex. As noted above, Larry earns a time-value return by making periodic payments instead of paying the financing charge at maturity, as in a forward contract. This time-value return is undertaxed if taxpayers choose a long term on their swap, thereby reducing their effective tax rate. This problem is less serious for swaps of reasonably short duration (e.g., three years or less). For longer swaps, more elaborate rules are needed, including adding interest to the tax to compensate for tax deferral.208 This additional complexity in the stated-term approach strengthens the case for mark-to-market accounting.

E. Wash Sales

The various proposals here eliminate the timing option for derivatives, thus obviating the need for blunter constraints on derivative losses, such as the capital loss limitations and wash sale rules. However, mark-to-market, the stated-term approach, and the zero rate are all harder to apply to the underlying property, for a combination of administrative and political reasons. As a result, other well-tailored constraints on the timing option are needed for these assets, if only to avoid sectoral inconsistency.

206 At first blush, this resembles an alternative in Notice 2001-44 called the “full allocation” method, I.R.S. Notice 2001-44, 2001-2 C.B. 77, 79, but the two are actually quite different. The full allocation method defers tax consequences until the swap either matures or is terminated early, thus leaving the timing option in place: Taxpayers with losses can terminate their swap prematurely to trigger deductions.

207 The New York State Bar Association proposes a similar assumption, although their proposal, like the government’s full allocation method, does not eliminate the timing option. Premature termination of the swap would trigger gains and (more importantly) losses. See N.Y. State Bar Ass’n Tax Section, Timing of Income and Loss, supra note 176, at 1764.

208 Alternatively, the party making periodic payments could be required to earn imputed interest income on them.
The wash sale rules are a good place to start. Under current law, when stock or securities are sold at a loss, this regime defers the deduction if the taxpayer buys substantially identical stock or securities within a designated period of time. This regime is meant to constrain the timing option, making it more difficult to accelerate losses. The price of claiming the deduction is that the taxpayer must divest herself economically of the investment. Yet the wash sale rules are thoroughly porous. As I have written elsewhere, “it is only a slight exaggeration to say that compliance with the regime is voluntary for very wealthy taxpayers—or, at least, for those who are willing to take aggressive positions.”209 At a minimum, taxpayers should not be able to claim a loss unless they make at least some real change in their economic condition. For instance, when depreciated stock is replaced with a periodic swap, the deduction needs to be disallowed.210

In order to set the gain-loss ratio at one, though, the wash sale regime should be quite a bit broader. To achieve balance, the timing for losses needs to match the timing for gains, and under current law gains are treated very generously. With sophisticated hedging transactions, taxpayers can essentially sell investments without triggering tax. Since 1997, taxpayers have had to retain a relatively modest amount of economic exposure to avoid a so-called “constructive sale” under section 1259.211 No tax is due as long as they do not eliminate “substantially all” of their risk of loss and opportunity for gain.212 Most practitioners believe this test is satisfied if a taxpayer keeps the first 20% of appreciation in the investment over three years. If the stock is worth $100, the appreciation from $100 to $120 is enough. In effect, taxpayers can turn stock into a 100–120 call spread without triggering gains.213

In order to match this deferral of gains, the wash sale rules should be tougher. Losses should be deferred—even when taxpayers make meaningful changes in their economic position—as long as they keep material elements of their old return. By analogy to the constructive sale rule’s treatment of gains, if a taxpayer sells stock at a loss, the deduction should be deferred if she acquires a 100–120 call spread or any other investment offering at least as much exposure to the stock. The overall concept (though not the statutory test) should be that any replacement position with a “delta” at least as great as that of a 100–120 call spread should trigger a wash sale.214

209. Schizer, Wash Sale, supra note 80, at 67.
210. If this Article’s reform agenda is implemented for derivatives, the wash sale rules do not have to apply when a swap is terminated at a loss. The point here, however, is to constrain the timing option on the stock, not on the swap.
212. Id.
213. See Schizer, Frictions as Constraint, supra note 19, at 170.
214. “Delta” is the change in price in one position (e.g., the call spread) when the other position (e.g., the loss position) declines in value by one dollar.
While a test based on delta is too sophisticated for most taxpayers to understand, this "call spread" theory can give guidance to policymakers about what the right answer is as a matter of policy, and thus about which aspects of current law need to be changed. Fortunately, current law already conforms to this standard in one important way. When stock is sold at a loss, the purchase of a call option triggers a wash sale even if the call option offers fairly different economic exposure. In other contexts, though, section 1091 needs to be significantly broader. For instance, a wash sale should be triggered when stock replaces a call option, when a put option replaces a short sale, when equity-linked life insurance replaces an investment in the underlying equity, and when one sector-specific mutual fund replaces another.

CONCLUSION

This Article breaks the deadlock in reforming the tax treatment of derivatives. For years, we have understood the value of consistency, but we have not been able to attain it. This Article offers a new theory for tackling this seemingly intractable challenge. By focusing on balance, policymakers can leave inconsistencies in place in the taxation of risk-based returns without prompting planning. This offers a unique opportunity to pursue administrability goals in an incremental and context-specific manner.

In addition to developing a broad theory of reform, this Article offers concrete guidance on specific issues. Most importantly, mark-to-market accounting should be used more broadly for derivatives, and, contrary to popular belief, we do not have to worry that taxpayers will shy away from this regime if the alternatives are taxed in a balanced way. Instead, taxpayers can cancel out the higher effective tax burden under mark-to-market by scaling up their positions. When valuation issues render mark-to-market impractical, the stated-term approach and even the zero rate can be used. With these two alternatives, the main challenge for policymakers is distinguishing risk-based returns, which can appropriately be taxed in this way, from wages and time-value returns, which cannot. The agenda in this Article also has implications for cutting-edge problems in the taxation of derivatives, including the timing and character rules for swaps, the treatment of hedge fund derivatives, Professor Warren's critique of section 1032, and the wash sale rules.

Finally, this Article makes a contribution that is of particular interest to academics. The Domar and Musgrave theory has long been a subject of controversy in the legal academy, and, in a recent flurry of articles, this issue is once again coming to a boil. Some have suggested that the theory is hopelessly impractical. How in the world can taxpayers simply scale up

216. For a discussion of the call spread theory and its implications, see generally Schizer, Wash Sale, supra note 80.
their bets? Is this not like the cliché about economists who open a can by assuming a can opener? In response, this Article identifies a context—the derivatives market—in which taxpayers can scale up relatively cheaply. Indeed, the Domar and Musgrave theory becomes quite practical, offering grounded applications in the sophisticated world of financial engineering.